CS 3710 Advanced Topics in AI Lecture 3

Probabilistic graphical models

Milos Hauskrecht

milos@cs.pitt.edu 5329 Sennott Square

CS 3710 Probabilistic graphical models

Graphical models

Aim: alleviate the representational and computational bottlenecks

Idea: Take advantage of the structure, more specifically, independences and conditional independences that hold among random variables

Two classes of models:

- Bayesian belief networks

- Modeling asymmetric (causal) effects and dependencies
- Markov random fields
 - Modeling symmetric effects and dependencies among random variables
 - Used often to model spatial dependences (image analysis)

Model acquisition problem

The structure of the BBN

- typically reflects causal relations (BBNs are also sometime referred to as causal networks)
- Causal structure is intuitive in many applications domain and it is relatively easy to define to the domain expert

Probability parameters of BBN

- are conditional distributions relating random variables and their parents
- Complexity is much smaller than the full joint
- It is much easier to obtain such probabilities from the expert or learn them automatically from data

CS 3710 Probabilistic graphical models

BBNs built in practice

- In various areas:
 - Intelligent user interfaces (Microsoft)
 - Troubleshooting, diagnosis of a technical device
 - Medical diagnosis:
 - Pathfinder (Intellipath)
 - CPSC
 - Munin
 - OMR-DT
 - Collaborative filtering
 - Military applications
 - Business and finance
 - Insurance, credit applications

Inference in Bayesian networks Computing: P(J = T) **Approach 1. Blind approach.** • Sum out all un-instantiated variables from the full joint, • express the joint distribution as a product of conditionals P(J = T) = $= \sum_{b \in T, F} \sum_{e \in T, F} \sum_{m \in T, F} P(B = b, E = e, A = a, J = T, M = m)$ $= \sum_{b \in T, F} \sum_{e \in T, F} \sum_{m \in T, F} P(J = T | A = a)P(M = m | A = a)P(A = a | B = b, E = e)P(B = b)P(E = e)$ **Computational cost:** Number of additions: ? Number of products: ?

Inference in Bayesian networks

Computing: P(J = T)

Approach 1. Blind approach.

- Sum out all un-instantiated variables from the full joint,
- express the joint distribution as a product of conditionals

$$P(J = T) =$$

$$= \sum_{b \in T, F} \sum_{e \in T, F} \sum_{a \in T, F} \sum_{m \in T, F} P(B = b, E = e, A = a, J = T, M = m)$$

$$= \sum_{b \in T, F} \sum_{e \in T, F} \sum_{a \in T, F} \sum_{m \in T, F} P(J = T | A = a) P(M = m | A = a) P(A = a | B = b, E = e) P(B = b) P(E = e)$$
Computational cost:
Number of additions: 15
Number of products: 2

CS 3710 Probabilistic graphical models

Inference in Bayesian networks Computing: P(J = T) **Approach 1. Blind approach.** • Sum out all un-instantiated variables from the full joint, • express the joint distribution as a product of conditionals P(J = T) = $= \sum_{b \in T, F} \sum_{a \in T, F} \sum_{m \in T, F} P(B = b, E = e, A = a, J = T, M = m)$ $= \sum_{b \in T, F} \sum_{a \in T, F} \sum_{m \in T, F} P(J = T | A = a)P(M = m | A = a)P(A = a | B = b, E = e)P(B = b)P(E = e)$ **Computational cost:** Number of additions: 15 Number of products: 16*4=64

Inference in Bayesian networks Approach 2. Interleave sums and products • Combines sums and product in a smart way (multiplications by constants can be taken out of the sum) P(J = T) = $= \sum_{b \in T, F} \sum_{a \in T, F} \sum_{m \in T, F} P(J = T | A = a)P(M = m | A = a)P(A = a | B = b, E = e)P(B = b)P(E = e)$ $= \sum_{b \in T, F} \sum_{a \in T, F} \sum_{m \in T, F} P(J = T | A = a)P(M = m | A = a)P(B = b)[\sum_{e \in T, F} P(A = a | B = b, E = e)P(E = e)]$ $= \sum_{a \in T, F} P(J = T | A = a)[\sum_{m \in T, F} P(M = m | A = a)][\sum_{b \in T, F} P(B = b)[\sum_{e \in T, F} P(A = a | B = b, E = e)P(E = e)]$ **Computational cost:** Number of additions: 1 + 2*[1 + 1 + 2*1] =? Number of products: 2*[2 + 2*(1 + 2*1)] =?

Inference in Bayesian networks Approach 2. Interleave sums and products • Combines sums and product in a smart way (multiplications by constants can be taken out of the sum) P(J = T) = $= \sum_{b \in T, F} \sum_{a \in T, F} \sum_{m \in T, F} P(J = T | A = a)P(M = m | A = a)P(A = a | B = b, E = e)P(B = b)P(E = e)$ $= \sum_{b \in T, F} \sum_{a \in T, F} \sum_{m \in T, F} P(J = T | A = a)P(M = m | A = a)P(B = b)[\sum_{e \in T, F} P(A = a | B = b, E = e)P(E = e)]$ $= \sum_{a \in T, F} P(J = T | A = a)[\sum_{m \in T, F} P(M = m | A = a)][\sum_{b \in T, F} P(B = b)[\sum_{e \in T, F} P(A = a | B = b, E = e)P(E = e)]$ **Computational cost:** Number of additions: 1 + 2*[1 + 1 + 2*1] = 9Number of products: 2*[2+2*(1+2*1)] = 16

Inference in Bayesian networks• When cashing of results becomes handy?• What if we want to compute a diagnostic query: $P(B = T | J = T) = \frac{P(B = T, J = T)}{P(J = T)}$ • Exactly probabilities we have just compared !!• There are other queries when cashing and ordering of sums and products can be shared and saves computation $P(B | J = T) = \frac{P(B, J = T)}{P(J = T)} = \alpha P(B, J = T)$ • General technique: Variable elimination

Markov random fields• Probabilistic models with symmetric dependences.– Typically models of spatially varying quantities $P(x) \propto \prod_{c \in cl(x)} f_c(x_c)$ $f_c(x_c)$ - A potential function (defined over factors) $P(x) = \frac{1}{Z} \exp\left(-\sum_{c \in cl(x)} \phi_c(x_c)\right)$ - Gibbs (Boltzman) distribution $Z = \sum_{x \in \{x\}} \exp\left(-\sum_{c \in cl(x)} \phi_c(x_c)\right)$ - Kapping Constrained by the second sec

Markov random fields Interactions induced by the factorized form are captured by an undirected network (also called independence graph) G = (S, E) S=1, 2, ... N correspond to random variables (i, j) ∈ E ⇔ ∃c : {i, j} ⊂ c or x_i and x_j appear within the same factor c Consequence: factors c correspond to cliques of the graph

