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An example of MRF

e Undirected Graph
X1 X2 X3
(D
o—C—O0
e Full joint distribution
p(X):%‘//1(X17X2)"//2(X2’X3)'

e Parameters
v (X, =0,X, =0),y,(X, =0,X, =),
v (X, =LX, =0),y (X, =1LX, =1,
w,(X,=0,X;=0),p,(X, =0,X;=1),
v,(X, =1,X;=0),y,(X, =1,X, =1).
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Assumptions :
e Complete data set
¢ No hidden variables, no missing value
¢ Independent identically distribution (lID)
e Discrete model
e Known structure
e Parameter independency
e Maximum likelihood estimation
o More difficult than that of Bayesian network
e Decomposable or non-decomposable model
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Notations

e V: set of nodes of the graph.
e X, :the random variable associated with ,, -y,
X, an instantiation of X,
e C:asubsetof V,
X, : set of variables indexed by C
X, : an instantiation of X,
Xy or x : an instantiation of all random variables
e N :number of samples in the data set D
n:Indexofdata.n=1,2...N
e D:(D,, Dy, ...,Dy) = (X, 4, Xy20 -+ X\ )
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e Full joint distribution

p(wa):éch(xC), z=3[Tveto)

e Likelihood

p(D,10)=p(x,, 10)=]]p(x, |6)" "

5(xV’xV,n):1 l.ff ‘xV :XV,n

p(D|6) = Hp(xyn 1) =T][]pCx 16)°
Maximum likelihood .

estimation for MRF

e Log likelihood
[(0,D)=log p(D|0) = log(HH px, |0)° " >J

—ZZ&XV xy ) log p(x, | 0) = ZM(XV)IOgP(XV 10)

o Count: the number of times that configuration x,, is
observed is defined as:

m(x,) = 25(XV 7xV,n)

e And marginal count for clique C :

m(x.) = Z m(x, )

xp\C




Count and Marginal Count

X1 X2 X3
0 0 0
0 0 1
1 1 0
1 0 1
0 0 1
1 0 1
1 1 1
0 0 1
1 0 0
0 1 0

m((X,;=0, X, =0, X;=1)) = ?

m((X,=1, X, =0))= ?

Count and Marginal Count

X, | X, | X
0 0 0
0 0 1
1 1 0
1 0 1
0 0 1
1 0 1
1 1 1
0 0 1
1 0 0
0 1 0

m((X,=1, X, =0)) = ?




Count and Marginal Count

X1 X2 X3

0 0 0

0 0 1 m((X;=0, X; =0, X3 =1)) = 3
1 1 0

1 0 1

0 0 1

! 0 1 m((X,=0, X, =0))= 3
1 1 1

0 0 1

1 0 0

0 1 0

Maximum likelihood
estimation for MRF

e Log likelihood
1(6,D)

=33 8(x,,x,,)log p(x, | 0)

= Zm(x,,)logp(x,, | 0)

Xy

= Zm(xV)log[%H‘//c (xc)j
- Zm(x,,)ZIOg(//C(xc) —ZM(XV)logZ

=33 m(xc)logy . (x.) - Nlog Z

C xc




Bayesian network vs MRF

. Parameters are
e Bayesian network decomposed

1(0,D) = Z Z (X 3 pau ) 10 0, (X111 paany)

Xtuyopa(u)

e MRF Parameters are not
[(6,D) = sz(xc)log‘//c(xc) —NlogZ

C xc

Maximum likelihood
estimation for MRF

e The derivative of normalization factor Z

dlogZ 1 0 (ZH‘/’D(ED)j

oy (xc) -z oW (xH\F b

= ;Zé(fcvxc)a(HWD(fD)j

al//c ('xc) D

S DILCHES) ) AN
:Zé(}mxc) %HV/D(?CD)

o
ve(X,)
1 - - _ P(xe)
= 5 csXce =
l//C (‘x(:) Zf: (x g )p(X) l//C (‘xC)
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Maximum likelihood sese
- u [ X J
estimation for MRF :
e The derivative of the log likelihood
ono, Dy _ m(x.) _N P(xc)
oWe(xe) welxe) Wel(xe)
e Set it to zero, we obtain:
. 1 ~
pML(xc) = _m(xc) = p(xc)
N
e An important property of MLE of MRF
e Foreach clique C, the model marginals P (xc)
must be equal to the empirical marginals p(x.)
[ X X ]
0000
( X X
[
:.

Decomposable models

e Graph G is decomposable iff it can be
recursively subdivided into disjoint sets A, B and
S, where S separates A and B, and where S is
complete. The union of A and S and the union of
B and S are also decomposable




Decomposable models

e Decomposable <>triangulated

MLE of Decomposable models

e For every clique C, set the clique potential to
the empirical marginal for that clique

e For every non-empty intersection between
cliques, associate an empirical with that
intersection, and divide that empirical
marginal into the potential of one of the two
cliques that form the intersection.




An example

l/}123,ML (x,,%,,%;) = p(x,,%,,X3);

P(Nxzaxpxﬂ; —~7-1
p(xz,x3)

p(xz,x4,x5)

5()(2,)64)

XS
X, TP CEED
X4

'/;234,ML (x5,X5,%,) =

‘/}234,ML (Xy,Xy,X5) =

e Could we set ?
Vg (X1, X5, %3) = D(x), %5, X5);
Vosaan (X35 %5, X,) = Py, X5, %, );
Waasam (X5 X4,%5) = P(Xy,X,,X5).
e MLE of full joint probability
A l:[ﬁ(xc)
P (%) =m




Iterative proportional fitting
(IPF)

e Properties of IPF

e It works for both decomposable and non-
decomposable models

e lItis guaranteed to converge

e Log-likelihood is guaranteed to increase or remain the
same after

e |PF update equation (coordinate ascent)

p(xc)
p(t) (x¢)

we (o) =wd (xe)

Two properties of the update
equation

e From the update equation, we can get:
" Z(l) ~
P (xo) = Wp(xc)

e The marginal of updated clique C is equal to its
empirical marginal 1 B
p(H )(xc) = p(x¢)

e The normalization factor Z remains constant

Z(f+1) — Z(f)
p(xc)
p(t)(xc)

= p(Hl) (XV) = P(Z)(xy)




The relationship between MLE | ::::
and KL divergence 2
e MLE 10.0) = 3003, log p(x, 1)
- Zm<x Jlog p(x, 16)
= NZ Bx,)log p(x, | 0)
e KL divergence”
D) | (<1 0) = T () log —L 0 (| )9)
= Zp(x) log p(x) - Zp(x) log p(x | )
° MaX|m|zmg the I|keI|hood is equivalent to
minimizing the KL divergence

Gradient ascent

e Update equation

w o) = (xe)+ (Plxe) =P (xc))

A
‘//i,t)(xc)
e Advantage

e All parameters can be adjusted simultaneously
e Disadvantage

e Have to choose appropriate A

e Recalculate Z after each iteration.




Exponential family model 2
e Exponential family model
p(x]0)= ;exp{z 0.f, (x)}, Z= Zexp{z M(x)}
e MRF is a specific case of exponential family
model

px10) =TTy (xo)

= ;eXp[log]:[ ve(xe )j = ;eXp[leogv/c (xc)j
Generalized Iterative scaling seis

(GIS)

e Constraints:
fi(x) =2 O,Zﬁ(x) =1

e Update equation

p(t+l) (x) — p(z) (x)H(

3 50 s )
> PV f(x)

e Update equation of IPF

W)y 0 PXC)
p(x)=p (X)—p(’)(xc)




Generalized Iterative scaling

e Log likelihood
1(0,D) = p(x)log p(x | 0)

=Y p(x)log p(x|6) = Zﬁ(X)Z 0,f.(x)—log Z(0)
e An lower bound Q of the log likelihood

1(6,D)> 0(6,0")
=20, 2. p(0)f,() = 2 exp(6, =0 £,(x)p(x| 0) ~log Z(0") +1

Generalized lterative scaling

e Same idea of EM
e MLE of the original exponential model are difficult

e MLE of Q is relative easy, because the parameters are
decoupled.

e lterative procedure
o Instep t, find 6“" which maximizes the 0(6,6")
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Generalized Iterative scaling :
e The derivative w.r.t 6,
0= 00(6,0")
)
=2 P00 —exp(d, = 6,") ) p(x0)f,(x)
e We obtain
RN CTC
9- t+1 —H_t — x
R W R IAT:
T > B0 ,(x)
B D WEIRYIE
(X X}
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Latent variables

e EM algorithm
e E-step: Traditional
e M-step: GIS algorithm




Thank you

Chenhai@cs.pitt.edu




