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Parameter Estimation of 
Markov Random Field

Chenhai Xi
chenhai@cs.pitt.edu

An example of MRF
Undirected Graph

Full joint distribution

Parameters 
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Assumptions
Complete data set 

No hidden variables, no missing value
Independent identically distribution (IID)

Discrete model
Known structure
Parameter independency
Maximum likelihood estimation

More difficult than that of Bayesian network
Decomposable or non-decomposable model

Notations
V : set of nodes of the graph.
Xu : the random variable associated with           , 
xu : an instantiation of Xu
C : a subset of V, 
XC : set of variables indexed by C
xc : an instantiation of XC
xV or x : an instantiation of all random variables
N : number of samples in the data set D
n : Index of data. n = 1,2…N
D : (D1, D2, … ,DN) = (xv,1, xv,2, … ,xv,N )

Vu∈
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Maximum likelihood 
estimation for MRF

Full joint distribution

Likelihood
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Maximum likelihood 
estimation for MRF

Log likelihood

Count: the number of times that configuration xV is 
observed is defined as: 

And marginal count for clique C :
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Count and Marginal Count
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Count and Marginal Count
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Maximum likelihood 
estimation for MRF

Log likelihood 
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Bayesian network vs MRF
Bayesian network

MRF
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Parameters are 
decomposed

Parameters are not
decomposed

Maximum likelihood 
estimation for MRF

The derivative of normalization factor Z
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Maximum likelihood 
estimation for MRF

The derivative of the log likelihood

Set it to zero, we obtain:

An important property of MLE of MRF
For each clique C, the model marginals

must be equal to the empirical marginals
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Decomposable models
Graph G is decomposable iff it can be 
recursively subdivided into disjoint sets A, B and 
S, where S separates A and B, and where S is 
complete. The union of A and S and the union of 
B and S are also decomposable
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Decomposable models

Decomposable triangulated

X1 X2

X4

X3

X5

S = {X2, X4} ?

MLE of Decomposable models

For every clique C, set the clique potential to 
the empirical marginal for that clique
For every non-empty intersection between 
cliques, associate an empirical with that 
intersection, and divide that empirical 
marginal into the potential of one of the two 
cliques that form the intersection.  
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An example
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MLE of full joint probability 
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Iterative proportional fitting 
(IPF)

Properties of IPF
It works for both decomposable and non-
decomposable models
It is guaranteed to converge
Log-likelihood is guaranteed to increase or remain the 
same after

IPF update equation (coordinate ascent)
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Two properties of the update 
equation

From the update equation, we can get:

The marginal of updated clique C is equal to its 
empirical marginal 

The normalization factor Z remains constant
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The relationship between MLE 
and KL divergence 

MLE

KL divergence

Maximizing the likelihood is equivalent to 
minimizing the KL divergence
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Gradient ascent
Update equation

Advantage
All parameters can be adjusted simultaneously

Disadvantage
Have to choose appropriate λ
Recalculate Z after each iteration.
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Exponential family model
Exponential family model 

MRF is a specific case of exponential family 
model 
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Generalized Iterative scaling 
(GIS)

Constraints: 

Update equation

Update equation of IPF
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Generalized Iterative scaling
Log likelihood

An lower bound Q of the log likelihood
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Generalized Iterative scaling
Same idea of EM

MLE of the original exponential model are difficult 
MLE of Q is relative easy, because the parameters are 
decoupled. 

Iterative procedure
In step t, find        which maximizes the  ),( )(tQ θθ)1( +tθ
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Generalized Iterative scaling
The derivative w.r.t θi

We obtain
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Latent variables

EM algorithm
E-step: Traditional
M-step: GIS algorithm
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Thank you

Chenhai@cs.pitt.edu


