## Parameter Estimation of Markov Random Field

Chenhai Xi chenhai@cs.pitt.edu

## An example of MRF

- Undirected Graph

- Full joint distribution

$$
p(X)=\frac{1}{Z} \psi_{1}\left(X_{1}, X_{2}\right) \cdot \psi_{2}\left(X_{2}, X_{3}\right) .
$$

- Parameters

$$
\begin{aligned}
& \psi_{1}\left(X_{1}=0, X_{2}=0\right), \psi_{1}\left(X_{1}=0, X_{2}=1\right) \\
& \psi_{1}\left(X_{1}=1, X_{2}=0\right), \psi_{1}\left(X_{1}=1, X_{2}=1\right) \\
& \psi_{2}\left(X_{2}=0, X_{3}=0\right), \psi_{2}\left(X_{2}=0, X_{3}=1\right) \\
& \psi_{2}\left(X_{2}=1, X_{3}=0\right), \psi_{2}\left(X_{2}=1, X_{3}=1\right)
\end{aligned}
$$

## Assumptions

- Complete data set
- No hidden variables, no missing value
- Independent identically distribution (IID)
- Discrete model
- Known structure
- Parameter independency
- Maximum likelihood estimation
- More difficult than that of Bayesian network
- Decomposable or non-decomposable model


## Notations

- $V$ : set of nodes of the graph.
- $X_{u}$ : the random variable associated with $u \in V$, $x_{u}$ : an instantiation of $X_{u}$
- $C$ : a subset of $V$,
$X_{C}$ : set of variables indexed by $C$
$x_{c}$ : an instantiation of $X_{C}$
$x_{V}$ or $x$ : an instantiation of all random variables
- $N$ : number of samples in the data set $D$
$n$ : Index of data. $n=1,2 \ldots N$
- $D:\left(D_{1}, D_{2}, \ldots, D_{N}\right)=\left(x_{v, 1}, x_{v, 2}, \ldots, x_{v, N}\right)$


## Maximum likelihood estimation for MRF

- Full joint distribution

$$
p\left(x_{V} \mid \theta\right)=\frac{1}{Z} \prod_{C} \psi_{C}\left(x_{C}\right), \quad Z=\sum_{x_{C}} \prod_{C} \psi_{C}\left(x_{C}\right)
$$

- Likelihood

$$
\begin{aligned}
& p\left(D_{n} \mid \theta\right)=p\left(x_{V, n} \mid \theta\right)=\prod_{x_{V}} p\left(x_{V} \mid \theta\right)^{\delta\left(x_{V}, x_{V, n}\right)} \\
& \delta\left(x_{V}, x_{V, n}\right)=1 \text { iff } x_{V}=x_{V, n} \\
& p(D \mid \theta)=\prod_{n} p\left(x_{V, n} \mid \theta\right)=\prod_{n} \prod_{x_{V}} p\left(x_{V} \mid \theta\right)^{\delta\left(x_{V}, x_{V, n}\right)}
\end{aligned}
$$

## Maximum likelihood estimation for MRF

- Log likelihood

$$
\begin{aligned}
& l(\theta, D)=\log p(D \mid \theta)=\log \left(\prod_{n} \prod_{x_{V}} p\left(x_{V} \mid \theta\right)^{\delta\left(x_{V}, x_{V, n}\right)}\right) \\
& =\sum_{n} \sum_{x_{V}} \delta\left(x_{V}, x_{V, n}\right) \log p\left(x_{v} \mid \theta\right)=\sum_{x_{V}} m\left(x_{V}\right) \log p\left(x_{V} \mid \theta\right)
\end{aligned}
$$

- Count: the number of times that configuration $x_{V}$ is observed is defined as:

$$
m\left(x_{V}\right) \equiv \sum_{n} \delta\left(x_{V}, x_{V, n}\right)
$$

- And marginal count for clique C :

$$
m\left(x_{C}\right) \equiv \sum_{x_{V} \backslash C} m\left(x_{V}\right)
$$

## Count and Marginal Count

| $X_{1}$ | $X_{2}$ | $X_{3}$ |
| :---: | :---: | :---: |
| 0 | 0 | 0 |
| 0 | 0 | 1 |
| 1 | 1 | 0 |
| 1 | 0 | 1 |
| 0 | 0 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 1 |
| 0 | 0 | 1 |
| 1 | 0 | 0 |
| 0 | 1 | 0 |

$$
m\left(\left(X_{1}=0, X_{2}=0, X_{3}=1\right)\right)=?
$$

$$
m\left(\left(X_{1}=1, X_{2}=0\right)\right)=?
$$

## Count and Marginal Count

| $X_{1}$ | $X_{2}$ | $X_{3}$ |
| :---: | :---: | :---: |
| 0 | 0 | 0 |
| 0 | 0 | 1 |
| 1 | 1 | 0 |
| 1 | 0 | 1 |
| 0 | 0 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 1 |
| 0 | 0 | 1 |
| 1 | 0 | 0 |
| 0 | 1 | 0 |

$$
m\left(\left(X_{1}=0, X_{2}=0, X_{3}=1\right)\right)=3
$$

$$
m\left(\left(X_{1}=1, X_{2}=0\right)\right)=?
$$

## Count and Marginal Count

| $X_{1}$ | $X_{2}$ | $X_{3}$ |
| :---: | :---: | :---: |
| 0 | 0 | 0 |
| 0 | 0 | 1 |
| 1 | 1 | 0 |
| 1 | 0 | 1 |
| 0 | 0 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 1 |
| 0 | 0 | 1 |
| 1 | 0 | 0 |
| 0 | 1 | 0 |

$$
m\left(\left(X_{1}=0, X_{2}=0, X_{3}=1\right)\right)=3
$$

$$
m\left(\left(X_{1}=0, X_{2}=0\right)\right)=3
$$

## Maximum likelihood estimation for MRF

- Log likelihood

$$
\begin{aligned}
& l(\theta, D) \\
& =\sum_{n} \sum_{x_{V}} \delta\left(x_{V}, x_{V, n}\right) \log p\left(x_{v} \mid \theta\right) \\
& =\sum_{x_{V}} m\left(x_{V}\right) \log p\left(x_{V} \mid \theta\right) \\
& =\sum_{x_{V}} m\left(x_{V}\right) \log \left(\frac{1}{Z} \prod_{C} \psi_{C}\left(x_{C}\right)\right) \\
& =\sum_{x_{V}} m\left(x_{V}\right) \sum_{C} \log \psi_{C}\left(x_{C}\right)-\sum_{x_{V}} m\left(x_{V}\right) \log Z \\
& =\sum_{C} \sum_{x_{C}} m\left(x_{C}\right) \log \psi_{C}\left(x_{C}\right)-N \log Z
\end{aligned}
$$

## Bayesian network vs MRF

- Bayesian network

$$
l(\theta, D)=\sum_{u} \sum_{x_{\{u\} \cup p a(u)}} m\left(x_{\{u\} \cup p a(u)}\right) \log \theta_{u}\left(x_{\{u\} \cup p a(u)}\right)
$$

- MRF

Parameters are not decomposed
$l(\theta, D)=\sum_{C} \sum_{x_{C}} m\left(x_{C}\right) \log \psi_{C}\left(\underline{\left.x_{C}\right)-N} \underline{\log Z}\right.$

## Maximum likelihood estimation for MRF

- The derivative of normalization factor $Z$

$$
\begin{aligned}
& \frac{\partial \log Z}{\partial \psi_{C}\left(x_{C}\right)}=\frac{1}{Z} \frac{\partial}{\partial \psi_{C}\left(x_{C}\right)}\left(\sum_{\tilde{x}} \prod_{D} \psi_{D}\left(\widetilde{x}_{D}\right)\right) \\
& =\frac{1}{Z} \sum_{\widetilde{x}} \delta\left(\widetilde{x}_{C}, x_{C}\right) \frac{\partial}{\partial \psi_{C}\left(x_{c}\right)}\left(\prod_{D} \psi_{D}\left(\widetilde{x}_{D}\right)\right) \\
& =\frac{1}{Z} \sum_{\tilde{x}} \delta\left(\tilde{x}_{C}, x_{C}\right) \prod_{D \neq C} \psi_{D}\left(\widetilde{x}_{D}\right) \\
& =\sum_{\tilde{x}} \delta\left(\tilde{x}_{C}, x_{C}\right) \frac{1}{\psi_{C}\left(\tilde{x}_{c}\right)} \frac{1}{Z} \prod_{D} \psi_{D}\left(\widetilde{x}_{D}\right) \\
& =\frac{1}{\psi_{C}\left(x_{c}\right)} \sum_{\tilde{x}} \delta\left(\tilde{x}_{C}, x_{C}\right) p(\tilde{x})=\frac{p\left(x_{C}\right)}{\psi_{C}\left(x_{C}\right)}
\end{aligned}
$$

## Maximum likelihood estimation for MRF

- The derivative of the log likelihood

$$
\frac{\partial l(\theta, D)}{\partial \psi_{C}\left(x_{C}\right)}=\frac{m\left(x_{C}\right)}{\psi_{C}\left(x_{C}\right)}-N \frac{p\left(x_{C}\right)}{\psi_{C}\left(x_{C}\right)}
$$

- Set it to zero, we obtain:

$$
\hat{p}_{M L}\left(x_{C}\right)=\frac{1}{N} m\left(x_{C}\right)=\widetilde{p}\left(x_{C}\right)
$$

- An important property of MLE of MRF
- For each clique $C$, the model marginals $\hat{p}_{M L}\left(x_{C}\right)$ must be equal to the empirical marginals $\widetilde{p}\left(x_{c}\right)$


## Decomposable models



- Graph $G$ is decomposable iff it can be recursively subdivided into disjoint sets $A, B$ and $S$, where $S$ separates $A$ and $B$, and where $S$ is complete. The union of $A$ and $S$ and the union of $B$ and $S$ are also decomposable



## Decomposable models

- Decomposable $\Leftrightarrow$ triangulated



## MLE of Decomposable models

- For every clique $C$, set the clique potential to the empirical marginal for that clique
- For every non-empty intersection between cliques, associate an empirical with that intersection, and divide that empirical marginal into the potential of one of the two cliques that form the intersection.


## An example

$$
\left.\begin{array}{l}
\hat{\psi}_{123, M L}\left(x_{1}, x_{2}, x_{3}\right)=\widetilde{p}\left(x_{1}, x_{2}, x_{3}\right) ; \\
\left.\hat{\psi}_{234, M L}\left(x_{2}, x_{3}, x_{4}\right)=\frac{\widetilde{p}\left(x_{2}, x_{3}, x_{4}\right)}{\widetilde{p}\left(x_{2}, x_{3}\right)} ;\right\} \Rightarrow Z=1 \\
\hat{\psi}_{234, M L}\left(x_{2}, x_{4}, x_{5}\right)=\frac{\widetilde{p}\left(x_{2}, x_{4}, x_{5}\right)}{\widetilde{p}\left(x_{2}, x_{4}\right)} .
\end{array}\right\}
$$



- Could we set ?

$$
\begin{aligned}
& \hat{\psi}_{123, M L}\left(x_{1}, x_{2}, x_{3}\right)=\widetilde{p}\left(x_{1}, x_{2}, x_{3}\right) ; \\
& \hat{\psi}_{234, M L}\left(x_{2}, x_{3}, x_{4}\right)=\widetilde{p}\left(x_{2}, x_{3}, x_{4}\right) ; \\
& \hat{\psi}_{345, M L}\left(x_{2}, x_{4}, x_{5}\right)=\widetilde{p}\left(x_{2}, x_{4}, x_{5}\right) .
\end{aligned}
$$

- MLE of full joint probability

$$
\hat{p}_{M L}(x)=\frac{\prod_{C} \tilde{p}\left(x_{C}\right)}{\prod_{S} \tilde{p}\left(x_{S}\right)}
$$

## Iterative proportional fitting (IPF)

- Properties of IPF
- It works for both decomposable and nondecomposable models
- It is guaranteed to converge
- Log-likelihood is guaranteed to increase or remain the same after
- IPF update equation (coordinate ascent)

$$
\psi_{C}^{(t+1)}\left(x_{C}\right)=\psi_{C}^{(t)}\left(x_{C}\right) \frac{\widetilde{p}\left(x_{C}\right)}{p^{(t)}\left(x_{C}\right)}
$$

## Two properties of the update equation

- From the update equation, we can get:

$$
p^{(t+1)}\left(x_{C}\right)=\frac{Z^{(t)}}{Z^{(t+1)}} \widetilde{p}\left(x_{C}\right)
$$

- The marginal of updated clique $C$ is equal to its empirical marginal

$$
p^{(t+1)}\left(x_{C}\right)=\widetilde{p}\left(x_{C}\right)
$$

- The normalization factor $Z$ remains constant

$$
\begin{aligned}
& Z^{(t+1)}=Z^{(t)} \\
& \Rightarrow p^{(t+1)}\left(x_{V}\right)=p^{(t)}\left(x_{V}\right) \frac{\widetilde{p}\left(x_{C}\right)}{p^{(t)}\left(x_{C}\right)}
\end{aligned}
$$

## The relationship between MLE and KL divergence

- MLE $l(\theta, D)=\sum_{n} \sum_{x_{V}} \delta\left(x_{V}, x_{V, n}\right) \log p\left(x_{v} \mid \theta\right)$

$$
=\sum_{x_{V}} m\left(x_{v}\right) \log p\left(x_{V} \mid \theta\right)
$$

- KL divergence ${ }^{x_{v}}$

$$
=N \sum_{x_{v}} \widetilde{p}\left(x_{v}\right) \log p\left(x_{V} \mid \theta\right)
$$

$$
\begin{aligned}
& D(\widetilde{p}(x) \| p(x \mid \theta))=\sum_{x} \widetilde{p}(x) \log \frac{\widetilde{p}(x)}{p(x \mid \theta)} \\
& =\sum_{x} \widetilde{p}(x) \log \widetilde{p}(x)-\sum_{x} \widetilde{p}(x) \log p(x \mid \theta)
\end{aligned}
$$

- Maximizing the likelihood is equivalent to minimizing the KL divergence


## Gradient ascent



- Update equation

$$
\psi_{c}^{(t+1)}\left(x_{C}\right)=\psi_{c}^{(t)}\left(x_{C}\right)+\frac{\lambda}{\psi_{c}^{(t)}\left(x_{C}\right)}\left(\widetilde{p}\left(x_{C}\right)-p^{(t)}\left(x_{C}\right)\right)
$$

- Advantage
- All parameters can be adjusted simultaneously
- Disadvantage
- Have to choose appropriate $\lambda$
- Recalculate $Z$ after each iteration.


## Exponential family model

- Exponential family model

$$
p(x \mid \theta)=\frac{1}{Z} \exp \left\{\sum_{\mathrm{i}} \theta_{i} f_{i}(x)\right\}, \mathrm{Z}=\sum_{x} \exp \left\{\sum_{\mathrm{i}} \theta_{i} f_{i}(x)\right\}
$$

- MRF is a specific case of exponential family model

$$
\begin{aligned}
& p(x \mid \theta)=\frac{1}{Z} \prod_{C} \psi_{C}\left(x_{C}\right) \\
& =\frac{1}{Z} \exp \left(\log \prod_{C} \psi_{C}\left(x_{C}\right)\right)=\frac{1}{Z} \exp \left(\sum_{C} \log \psi_{C}\left(x_{C}\right)\right)
\end{aligned}
$$

## Generalized Iterative scaling (GIS)

- Constraints:

$$
f_{i}(x) \geq 0, \sum_{i} f_{i}(x)=1
$$

- Update equation

$$
p^{(t+1)}(x)=p^{(t)}(x) \prod_{i}\left(\frac{\sum_{x} \widetilde{p}(x) f_{i}(x)}{\sum_{x} p^{(t)}(x) f_{i}(x)}\right)^{f_{i}(x)}
$$

- Update equation of IPF

$$
p^{(t+1)}(x)=p^{(t)}(x) \frac{\widetilde{p}\left(x_{C}\right)}{p^{(t)}\left(x_{C}\right)}
$$

## Generalized Iterative scaling

- Log likelihood

$$
\begin{aligned}
& l(\theta, D)=\sum_{x} \widetilde{p}(x) \log p(x \mid \theta) \\
& =\sum_{x} \widetilde{p}(x) \log p(x \mid \theta)=\sum_{x} \widetilde{p}(x) \sum_{i} \theta_{i} f_{i}(x)-\log Z(\theta)
\end{aligned}
$$

- An lower bound $Q$ of the log likelihood

$$
\begin{aligned}
& l(\theta, D) \geq Q\left(\theta, \theta^{(t)}\right) \\
& =\sum_{i} \theta_{i} \sum_{x} \widetilde{p}(x) f_{i}(x)-\sum_{i} \exp \left(\theta_{i}-\theta^{(t)}\right) \sum_{x} f_{i}(x) p\left(x \mid \theta^{(t)}\right)-\log Z\left(\theta^{(t)}\right)+1
\end{aligned}
$$

## Generalized Iterative scaling



- Same idea of EM
- MLE of the original exponential model are difficult
- MLE of $Q$ is relative easy, because the parameters are decoupled.
- Iterative procedure
- In step $t$, find $\theta^{(t+1)}$ which maximizes the $Q\left(\theta, \theta^{(t)}\right)$


## Generalized Iterative scaling

- The derivative w.r.t $\theta_{i}$

$$
\begin{aligned}
& 0=\frac{\partial Q\left(\theta, \theta^{(t)}\right)}{\partial \theta_{i}} \\
& =\sum_{x} \widetilde{p}(x) f_{i}(x)-\exp \left(\theta_{i}-\theta_{i}^{(t)}\right) \sum_{x} p\left(x \mid \theta^{(t)}\right) f_{i}(x)
\end{aligned}
$$

- We obtain

$$
\begin{aligned}
& \exp \left(\theta_{i}^{(t+1)}-\theta_{i}^{(t)}\right)=\frac{\sum_{x} \widetilde{p}(x) f_{i}(x)}{\sum_{x} p\left(x \mid \theta^{(t)}\right) f_{i}(x)} \\
& \Rightarrow \theta_{i}^{(t+1)}=\theta_{i}^{(t)}+\log \left(\frac{\sum_{x} \widetilde{p}(x) f_{i}(x)}{\sum_{x} p\left(x \mid \theta^{(t)}\right) f_{i}(x)}\right)
\end{aligned}
$$

## Latent variables

- EM algorithm
- E-step: Traditional
- M-step: GIS algorithm


