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The General Problem

m Learn the parameters for a fixed
network with complete data

m Learn the parameters for a fixed
network with incomplete data

= Learn both parameters and
even the network structure from
incomplete data — in the
presence of missing values or
hidden variables




The Structural EM Algorithm

= |n the previous paper:

e Combines Standard EM algorithm which
optimizes parameters and Structure
search for model selection

e Using penalized likelihood scores which
includes BIC/MDL and various
approximations to the Bayesian score

= In this paper, extended structural EM
to deal with the Bayesian model
selection

Introduction

m Current methods are successful at
learning both the structure and the
parameters from complete data

m Things are different when the data is
incomplete

m |t is unreasonable to require
complete data to train the network
while allowing inference based on
incomplete data




Introduction

m The key idea in structural EM:

e Use the best estimate of the distribution
to complete the data and use
procedures that work efficiently for
complete data on this completed data.

e Performs search in the joint space of

(structure X parameters ) for the best
structure

e In each step, it either find better

parameters for the current structure or
find a new structure

Preliminaries

m Factored Model

A factored model M (for U = {X|,..., X }) is a para-
metric family with parameters @M = (@M ... OM) that
defines a joint probability measure of the tlorm:

PI'(X],...,XW_ | theM) =1-[;if:iM(XlJ'“JXﬂ : GJ.EM-)J

where each f;M is a factor whose value depends on some
(or all) of the variables Xy,..., X,,. A factored model is
separable if the space of legal choices of parameters is the

cross product of the legal choices of parameters ©M for each

M. In other words, if legal parameterization of different
factors can be combined without restrictions.




Bayesian Learning

m Bayesian Learning attempts to
make predictions by
conditioning the prior on the
observed data.

m The prediction of the probability
of an event X after seeing the
training data, can be written as:
Pr(X | D) = Yo Pr(X | M* D)yPe(M"| D)

= EMPT(Xth,D)PrDIMh PI'M}'

Pr(D)

Bayesian Learning

m Where

Pe(D | M) = [ Pr(D | M*,©) Pr{© | M*)do, (2)

- Pr(X|M" D)= [Pr(X | M: ©)Pr(©| M" D)dO.
(3)
= We can not afford to sum over all
possible models
e MAP model

e Sum over models with highest
posterior probabilities




Assumptions

Assumption 1. All the models M are separable factored
models.

Assumption 2. All the models in M contain only expo-
nential factors.

™= Assumption 3. For each model M € M with k factors the
prior distribution over parameters has the form

pr(OY ..., 0} | MF) = [T, Pe(@} | Ar%).

Assumption 4. If fM = ‘EM! for some M, M’ € M, then
PHOM | M) = Pr(@ | M7,

Exponential Representation

Proposition 2.4: Given Assumptions 1-4 and a data set
D ={u',...,u’} of complete assignments to U, the score
ofa mod@l’ M Ihafcomzm of k factors fi,. .., fu, is

1301 =15 (T 00

=

where
M$=/@@”H®M@:

and 1;(-), and s;(-) are the the exponential representation

of fi.




Prior

m In practice, it is useful to require
that the prior for each factor is a
conjugate prior.

m For many types of exponential
distributions, the conjugate
priors lead to a close-form
solution for the posterior beliefs
and for the probability of the
data.

Dirichlet Prior

Example 2.5 We now complete the description ofthe learn-
ing problem of multinomial belief networks. Following
[9, 17] we use Dirichlet priors. A Dirichlet prior for a
multinomial distribution of a variable X is specified by a

setof hyperparameters {N] ,..., N} } where v, ..., v are
the values of X. We say that

Pr(©) ~ Dirichlet({N} ,..., N/,}} if Pr(©) o [T, 81,
For a Dirichlet prior with parameters N, ,..., ’\f;f,k the

probability of the values of X with sufficient statistics
S ={Ny,...,Ny,) is given by
_ T N TN 4N
PO =ryimiteoy Loy > @

where I'(z) = fooo 7=le=tdt is the Gamma function. For
more details on Dirichlet priors, see [10].

—1




Learning From complete data

m Learning factored models from data
is done by searching over the space
of models for a model that maximize
the score

m By changing the factored model
locally, the score of the new model
differs from the score of the old
model by only a few terms

m By caching accumulated sufficient
statistics for various factors, various
combination of different factors can
be evaluated efficiently

Modifying the model

m Operations:
e Arc Additions
e Arc Removals
e Arc Reversals
m Complexity
e O(n?) neighbors at each step
e O(n) re-evaluations




Learning from incomplete data

m Harder than that for complete data

e The posterior is no longer product of
independent terms

e The probability of data is no longer
product of terms

e The model can not be represented with
closed form

e Can not make exact prediction give a
model using the integral of (3)

Learning from Incomplete data

m Harder than learning from complete data

¢ Since the probability of the data given a
model no longer decomposes, direct
estimate the integral of (2) is needed.

e Approximating the integral

m If the posterior over parameters is
sharply peaked, the integral in (3) is
dominated by the prediction in a

small region around the posterior’
peak, so that

Pr(X | M", D) == Pr{X | M",0)




Learning from Incomplete data

m Estimate the integral

Pr(D | M%) = [Pr(D | M, ©)Pr{© | M")dO
m Stochastic Simulation
m Large-sample approximation

The structural EM Algorithm

m Directly optimize the Bayesian
score rather than asymptotic
approximation




The Structural EM

m A class of models M that each model is
parameterized by a vector ®M such that each
choice of values ®M defines a probability
distribution Pr( -:, M, @M)

®  Assuming prior over models and parameter
assignment in each model

™ » Maximize

Pr(D | M")Pr(M")
Pr(D)

Pr(M" | D)=

Pr(D) is the probability over all models, which is
the same for all the models, so maximize the
nominator is enough

The structural EM

m With missing data in D, evaluating
Pr(D|MP) is not easy

m Assuming the evaluation of
Pr(H,O|M") is possible

e True for models satisfying assumption
1-4




The structural EM Algorithm

Procedure Bayesian-SEM(M,, o):
Loop for n =0, 1,... until convergence
Compute the posterior Pr(@Mﬂ' | M, 0).
E-step: For each M, compute
Q(M : M,,) = EllogPr{(H, 0, M") | M", o]
=3 Pr(h|o, MY log Pr(h, 0, M™)
M-step Choose M, that maximizes Q(M : M.,)
if Q‘{; n ﬂ/fn) = Q(z ndl ﬂ/[n) then
return M,

The Structural EM

m At each iteration, the algorithm
attempts to maximize the
expected score of models
instead of their actual score
e Why is this easier?

= Depends on the class of model

e What does this buy us?
m The evaluation is efficient




Theorem 3.1

Theorem 3.1: Let Ay, My, ... be the sequence of models
examined by the Bavesian SEM procedure. Then,

log Prio, kf£+l:] — log Pr{o, M)
> QM1 2 My) — Q(M,, : M,)
Proot:
Pr{o Mgy )
log r6arEy
prth,o.ar2, 0 prchjo,ard
= loed h o Pj-Eh:O,MQ:;

v | -

= log Zh Prih | o, Nfﬁ) Pp(,.clz‘;f;fkjl) (©)
Pr h. 0 :: 1

= 3, Prih | o, M) log P(r{ fc':;fg)) 2

riH, 0 a1k, )
= Q(Mny1 : Myp) — Q(My : My)

where all the transformations are by algebraic manipula-
tions, and the mequality between (6) and (7) is a conse-
quence of Jensen’s inequality * Il

A weaker algorithm

m M*-step

e Choose M, ,, such that
Q(Mn+1 : Mn) > Q(Mn : Mn)




Theorem 3.2

Theorem 3.2: Let My, My,... be the sequence of models
examined by the Bayesian SEM procedure. If the number of
models in M is finite, or if there is a constant e such that
Pr(D | M”,E)M) < e for all models M and parameters

OM  then the limit limy_yo Pr{o, Mh ) exists.

Bayesian Structural EM for
factored models

Proposition 4.1: Let D = {x!,...,x"} be a training set
that consist of incomplete assignments to U. Given Assump-
tions 1-4, if M consists of k factors, fi,..., fu, then
k
EllogPr{H, 0 | M")] = 17, Ellog Fi(S;)],

where S; = Zj.\;l si(Uj ) is a random variable that repre-
sents the accumulated sufficient statistics for the factor f;
in possible completions of the data.




Bayesian Structural EM for
factored models
= Evaluating
Ellog F;(S;)]
m Simple approximation
EflogF(S,)]~ log F}(E[S,])

= Computing probability over
assignments H
e Use MAP approximation

Pr(X |M",D)~Pr(X |M",0)

Bayesian Structural EM for
factored models

Procedure Factored-Bayesian-SEM(M, o):
Loop for n =0, 1,... until convergence

Compute the MAP parameters O™+ for M, given o.

Perform search over models, evaluating each model by
Score M : My) = gj Ellog FM(SM) | o, M, 0]

Let M1 be the modef with the highest score among
these encountered during the search.

if Score( M., : My,) = Score( My - M,,) then
return M.,




Computing E[logF(S)]

m Linear approximation
log F(S) = log F(E[S]) + (S — E[S]) V{log F)(E[S]) +
3(S = E[S]))TV*{log F)(S*)(S ~ E[S])

< " Gaussian approximation

Pllog F(S)| [ log F(S)p(S : FIS] 2IS])dS

E[logF(S)] on Dirichlet Prior

log F({Nv|:~-~;Nw))
= log (T, )~ g F((;, + M)
+ 22 (log T(N;, + N(v;)) — log (N, ))

Ellog F({Ny,, -, Nyl
= Y, Ellog I(N., + N(v:))] -
Ellog (3, (Ny; + N{wi)))] + ¢

See the paper for details




Introduction

m Learning both the structure and
the parameters

m Using combination of EM and
Imputation techniques




Missing Data

= MCAR
= MAR
= NMAR

Methods for handling missing
data

= Using only fully-observed cases
= Assign to each missing value a new value

m Replacing each missing value by a single
value

m Replacing each missing value by the mean
of observed values

= Multiple imputation method

m Sum over all possible values for each
missing data point while calculating the
required parameters

= EM and Gibbs sampling




The Algorithm

m Combination of EM and Imputation
to interactively refine the structure

e Use current estimate of the structure
and the incomplete data to refine the
conditional probabilities

e Impute new values for missing data
points by sampling from the new
estimate of the conditional probabilities

¢ Refines the structure from new estimate
of the data using standard algorithms for
learning Bayesian network from
complete data

Imputation

= Missing data can be imputed to
values drawn from the estimated
conditional probability
distributions




The Algorithm

. Create M complete - datasets, DAS( Y 1< s < M,by sampling M
values for each missing value from the prior distributi on of each

sttribute
2. For s:=1to M do

2a. From the compete - dataset D

@ induce the Bayesian network

- .
structure, B, that has the maximum posterior probabilit y

given the data, i.e. maximizes P(B D" )

2b. Use the EM algorithm to learn the conditiona I probabilie s 67_”) ,

s

using the original incomplete data D and the network structure

é_f“ the graph union of all the resultant structures .

The Algorithm

3. Fuse the networks to create a single Bayesian network < 87,0 > as
follows. Construct the network structure B” by taking the arc - union
of the individual, network structures.i.e. B” = szl___MB(’).If the
orderings imposed on the attributes by the various network structures
are not consistent, then it is possible to construct B” by choosing one
of the orderings(e.g. a total ordering consistent with the network structure
with the maximum posterior probability), making all the other network
structures consistent with this ordering by performing necessary arc -

reversals, and then taking the graph union of all the resultant structures.




The Algorithm

4.1f theconvergenecriteriais achievedstop.Elsego tostep5

5.CreateM newcomplete datasetsD"" bysamplingl valuesforeach

missingvaluesbysamplingromthedistributon obtainedromlaststep

Question?

Any question?

Thank you!




