

The General Problem

- Learn the parameters for a fixed network with complete data
- Learn the parameters for a fixed network with incomplete data
- Learn both parameters and even the network structure from incomplete data – in the presence of missing values or hidden variables

The Structural EM Algorithm

- In the previous paper:
 - Combines Standard EM algorithm which optimizes parameters and Structure search for model selection
 - Using penalized likelihood scores which includes BIC/MDL and various approximations to the Bayesian score
- In this paper, extended structural EM to deal with the Bayesian model selection

Introduction

- Current methods are successful at learning both the structure and the parameters from complete data
- Things are different when the data is incomplete
- It is unreasonable to require complete data to train the network while allowing inference based on incomplete data

Introduction

- The key idea in structural EM:
 - Use the best estimate of the distribution to complete the data and use procedures that work efficiently for complete data on this completed data.
 - Performs search in the joint space of (structure X parameters) for the best structure
 - In each step, it either find better parameters for the current structure or find a new structure

Preliminaries

Factored Model

A factored model M (for $\mathbf{U} = \{X_1, \dots, X_n\}$) is a parametric family with parameters $\Theta^M = \langle \Theta_1^M, \dots, \Theta_k^M \rangle$ that defines a joint probability measure of the form:

$$Pr(X_1,\ldots,X_n \mid M^h,\Theta^M) = \prod_i f_i^M(X_1,\ldots,X_n:\Theta_i^M),$$

where each f_i^M is a *factor* whose value depends on some (or all) of the variables X_1, \ldots, X_n . A factored model is *separable* if the space of legal choices of parameters is the cross product of the legal choices of parameters Θ_i^M for each f_i^M . In other words, if legal parameterization of different factors can be combined without restrictions.

Bayesian Learning

- Bayesian Learning attempts to make predictions by conditioning the prior on the observed data.
- The prediction of the probability of an event X after seeing the training data, can be written as:

$$\begin{array}{rcl} \Pr(X \mid D) & = & \sum_{M} \Pr(X \mid M^{h}, D) \Pr(M^{h} \mid D) \\ & = & \sum_{M} \Pr(X \mid M^{h}, D) \frac{\Pr(D \mid M^{h}) \Pr(M^{h})}{\Pr(D)} \end{array}$$

Bayesian Learning

Where

$$\Pr(D \mid M^h) = \int \Pr(D \mid M^h, \Theta) \Pr(\Theta \mid M^h) d\Theta_{\bullet}$$
(2)

$$\Pr(X \mid M^h, D) = \int \Pr(X \mid M^h, \Theta) \Pr(\Theta \mid M^h, D) d\Theta.$$
(3)

- We can not afford to sum over all possible models
 - MAP model
 - Sum over models with highest posterior probabilities

Assumptions

Assumption 1. All the models \mathcal{M} are separable factored models.

Assumption 2. All the models in \mathcal{M} contain only exponential factors.

Assumption 3. For each model $M \in \mathcal{M}$ with k factors the prior distribution over parameters has the form

$$\Pr(\Theta_1^M, \dots, \Theta_k^M \mid M^h) = \prod_i \Pr(\Theta_i^M \mid M^h).$$

Assumption 4. If $f_i^M = f_j^{M'}$ for some $M, M' \in \mathcal{M}$, then $\Pr(\Theta_i^M \mid M^h) = \Pr(\Theta_i^{M'} \mid M'^h)$.

Exponential Representation

Proposition 2.4: Given Assumptions 1–4 and a data set $D = \{\mathbf{u}^1, \dots, \mathbf{u}^N\}$ of complete assignments to \mathbf{U} , the score of a model M that consists of k factors f_1, \dots, f_k , is

$$\Pr(D \mid M^h) = \prod_{i=1}^k F_i \left(\sum_{j=1}^N s_i(\mathbf{u}^j) \right),$$

where

$$F_i(S) = \int e^{t_i(\Theta_i) \cdot S} \Pr(\Theta_i) d\Theta_i,$$

and $t_i(\cdot)$, and $s_i(\cdot)$ are the exponential representation of f_i .

Prior

- In practice, it is useful to require that the prior for each factor is a conjugate prior.
- For many types of exponential distributions, the conjugate priors lead to a close-form solution for the posterior beliefs and for the probability of the data.

Dirichlet Prior

Example 2.5 We now complete the description of the learning problem of multinomial belief networks. Following [9, 17] we use *Dirichlet priors*. A Dirichlet prior for a multinomial distribution of a variable X is specified by a set of *hyperparameters* $\{N'_{v_1}, \ldots, N'_{v_l}\}$ where v_1, \ldots, v_l are the values of X. We say that

$$\Pr(\Theta) \sim \text{Dirichlet}(\{N'_{v_1}, \dots, N'_{v_l}\}) \text{ if } \Pr(\Theta) \propto \prod_{v_i} \theta_{v_i}^{N'_{v_i}-1}.$$

For a Dirichlet prior with parameters $N'_{v_1}, \ldots, N'_{v_k}$ the probability of the values of X with sufficient statistics $S = \langle N_{v_1}, \ldots, N_{v_k} \rangle$ is given by

$$F(S) = \frac{\Gamma(\sum_{i} N'_{v_i})}{\Gamma(\sum_{i} (N'_{v_i} + N_{v_i}))} \prod_{i} \frac{\Gamma(N'_{v_i} + N_{v_i})}{\Gamma(N'_{v_i})}, \qquad (4)$$

where $\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$ is the *Gamma* function. For more details on Dirichlet priors, see [10].

Learning From complete data

- Learning factored models from data is done by searching over the space of models for a model that maximize the score
- By changing the factored model locally, the score of the new model differs from the score of the old model by only a few terms
- By caching accumulated sufficient statistics for various factors, various combination of different factors can be evaluated efficiently

Modifying the model

- Operations:
 - Arc Additions
 - Arc Removals
 - Arc Reversals
- Complexity
 - O(n²) neighbors at each step
 - O(n) re-evaluations

Learning from incomplete data

- Harder than that for complete data
 - The posterior is no longer product of independent terms
 - The probability of data is no longer product of terms
 - The model can not be represented with closed form
 - Can not make exact prediction give a model using the integral of (3)

Learning from Incomplete data

- Harder than learning from complete data
 - Since the probability of the data given a model no longer decomposes, direct estimate the integral of (2) is needed.
 - Approximating the integral
 - If the posterior over parameters is sharply peaked, the integral in (3) is dominated by the prediction in a small region around the posterior' peak, so that

 $\Pr(X \mid M^h, D) \approx \Pr(X \mid M^h, \hat{\Theta})$

Learning from Incomplete data

Estimate the integral

 $\Pr(D \mid M^h) = \int \Pr(D \mid M^h, \Theta) \Pr(\Theta \mid M^h) d\Theta$

- Stochastic Simulation
- Large-sample approximation

The structural EM Algorithm

 Directly optimize the Bayesian score rather than asymptotic approximation

The Structural EM

- A class of models M that each model is parameterized by a vector Θ^{M} such that each choice of values Θ^{M} defines a probability distribution $Pr(:, M, \Theta^{M})$
- Assuming prior over models and parameter assignment in each model
- Maximize

$$Pr(M^h \mid D) = \frac{Pr(D \mid M^h) Pr(M^h)}{Pr(D)}$$

Pr(D) is the probability over all models, which is the same for all the models, so maximize the nominator is enough

The structural EM

- With missing data in D, evaluating Pr(D|Mh) is not easy
- Assuming the evaluation of Pr(H,O|Mh) is possible
 - True for models satisfying assumption 1 − 4

The structural EM Algorithm

Procedure Bayesian-SEM (M_0, \mathbf{o}) : Loop for $n = 0, 1, \ldots$ until convergence Compute the posterior $\Pr(\Theta^{M_n} \mid M_n^h, \mathbf{o})$. E-step: For each M, compute $Q(M:M_n) = E[\log \Pr(\mathbf{H}, \mathbf{o}, M^h) \mid M_n^h, \mathbf{o}]$ $= \sum_{\mathbf{h}} \Pr(\mathbf{h} \mid \mathbf{o}, M_n^h) \log \Pr(\mathbf{h}, \mathbf{o}, M^h)$ M-step Choose M_{n+1} that maximizes $Q(M:M_n)$ if $Q(M_n:M_n) = Q(M_{n+1}:M_n)$ then return M_n

The Structural EM

- At each iteration, the algorithm attempts to maximize the expected score of models instead of their actual score
 - Why is this easier?
 - Depends on the class of model
 - What does this buy us?
 - The evaluation is efficient

Theorem 3.1

Theorem 3.1: Let M_0, M_1, \ldots be the sequence of models examined by the Bayesian SEM procedure. Then,

$$\begin{aligned} \log \Pr(\mathbf{o}, M_{n+1}^h) &- \log \Pr(\mathbf{o}, M_n^h) \\ &\geq Q(M_{n+1} : M_n) - Q(M_n : M_n) \end{aligned}$$

Proof:

$$\log \frac{\Pr(\mathbf{o}, M_{n+1}^h)}{\Pr(\mathbf{o}, M_n^h)}$$

$$= \log \sum_{\mathbf{h}} \frac{\Pr(\mathbf{h}, \mathbf{o}, M_{n+1}^h)}{\Pr(\mathbf{o}, M_n^h)} \cdot \frac{\Pr(\mathbf{h}|\mathbf{o}, M_n^h)}{\Pr(\mathbf{h}|\mathbf{o}, M_n^h)}$$

$$= \log \sum_{\mathbf{h}} \Pr(\mathbf{h} \mid \mathbf{o}, M_n^h) \frac{\Pr(\mathbf{h}, \mathbf{o}, M_{n+1}^h)}{\Pr(\mathbf{h}, \mathbf{o}, M_n^h)}$$

$$\geq \sum_{\mathbf{h}} \Pr(\mathbf{h} \mid \mathbf{o}, M_n^h) \log \frac{\Pr(\mathbf{h}, \mathbf{o}, M_{n+1}^h)}{\Pr(\mathbf{h}, \mathbf{o}, M_n^h)}$$

$$= E[\log \frac{\Pr(\mathbf{H}, \mathbf{o}, M_{n+1}^h)}{\Pr(\mathbf{H}, \mathbf{o}, M_n^h)} \mid M_n^h, \mathbf{o}]$$

$$= Q(M_{n+1} : M_n) - Q(M_n : M_n)$$
(6)

where all the transformations are by algebraic manipulations, and the inequality between (6) and (7) is a consequence of Jensen's inequality.³

A weaker algorithm

- M*-step
 - Choose M_{n+1} such that

$$Q(M_{n+1}: M_n) > Q(M_n: M_n)$$

Theorem 3.2

Theorem 3.2: Let $M_0, M_1, ...$ be the sequence of models examined by the Bayesian SEM procedure. If the number of models in \mathcal{M} is finite, or if there is a constant c such that $\Pr(D \mid M^h, \Theta^M) < c$ for all models M and parameters Θ^M , then the limit $\lim_{n\to\infty} \Pr(\mathbf{o}, M_n^h)$ exists.

Bayesian Structural EM for factored models

Proposition 4.1: Let $D = \{\mathbf{x}^1, \dots, \mathbf{x}^N\}$ be a training set that consist of incomplete assignments to \mathbf{U} . Given Assumptions 1–4, if M consists of k factors, f_1, \dots, f_k , then

$$E[\log \Pr(\mathbf{H}, \mathbf{o} \mid M^h)] = \sum_{i=1}^k E[\log F_i(S_i)],$$

where $S_i = \sum_{j=1}^{N} s_i(\mathbf{U}^j)$ is a random variable that represents the accumulated sufficient statistics for the factor f_i in possible completions of the data.

Bayesian Structural EM for factored models

Evaluating

$$E[\log F_i(S_i)]$$

Simple approximation

$$E[\log F_i(S_i)] \approx \log F_i(E[S_i])$$

- Computing probability over assignments H
 - Use MAP approximation

$$\Pr(X \mid M^h, D) \approx \Pr(X \mid M^h, \hat{\Theta})$$

Bayesian Structural EM for factored models

Procedure Factored-Bayesian-SEM(M_0 , σ):

Loop for $n = 0, 1, \dots$ until convergence

Compute the MAP parameters $\hat{\Theta}^{M_n}$ for M_n given ${\bf o}$. Perform search over models, evaluating each model by

 $Score(M:M_n) = \sum_i E[\log F_i^M(S_i^M) \mid \mathbf{o}, M_n^h, \hat{\Theta}_n^M]$ Let M_{n+1} be the model with the highest score among

Let M_{n+1} be the model with the highest score among these encountered during the search.

if $Score(M_n : M_n) = Score(M_{n+1} : M_n)$ then return M_n

Computing E[logF(S)]

Linear approximation

$$\log F(S) = \log F(E[S]) + (S - E[S]) \nabla (\log F)(E[S]) + \frac{1}{2} (S - E[S])^T \nabla^2 (\log F)(S^*)(S - E[S])$$

Gaussian approximation

$$E[\log F(S)] \approx \int \log F(S)\varphi(S:E[S],\Sigma[S])dS$$

E[logF(S)] on Dirichlet Prior

$$\log F(\langle N_{v_1}, \dots, N_{v_l} \rangle)$$

$$= \log \Gamma(\sum_i N'_{v_i}) - \log \Gamma(\sum_i (N'_{v_i} + N(v_i)))$$

$$+ \sum_i (\log \Gamma(N'_{v_i} + N(v_i)) - \log \Gamma(N'_{v_i}))$$

$$E[\log F(\langle N_{v_1}, \dots, N_{v_l} \rangle)]$$

$$= \sum_i E[\log \Gamma(N'_{v_i} + N(v_i))] - E[\log \Gamma(\sum_i (N'_{v_i} + N(v_i)))] + c$$

See the paper for details

Introduction

- Learning both the structure and the parameters
- Using combination of EM and Imputation techniques

Missing Data

- MCAR
- MAR
- NMAR

Methods for handling missing data

- Using only fully-observed cases
- Assign to each missing value a new value
- Replacing each missing value by a single value
- Replacing each missing value by the mean of observed values
- Multiple imputation method
- Sum over all possible values for each missing data point while calculating the required parameters
- EM and Gibbs sampling

The Algorithm

- Combination of EM and Imputation to interactively refine the structure
 - Use current estimate of the structure and the incomplete data to refine the conditional probabilities
 - Impute new values for missing data points by sampling from the new estimate of the conditional probabilities
 - Refines the structure from new estimate of the data using standard algorithms for learning Bayesian network from complete data

Imputation

 Missing data can be imputed to values drawn from the estimated conditional probability distributions

The Algorithm

- 1. Create M complete datasets, $\hat{D}_s^{(0)}$, $1 \le s \le M$, by sampling M values for each missing value from the prior distributi on of each stribute
- 2. For s := 1 to M do
- 2a. From the compete dataset $\hat{D}_s^{(t)}$, induce the Bayesian network structure, $\hat{B}_s^{(t)}$, that has the maximum posterior probability given the data, i.e. maximizes $P(B_s|\hat{D}_s^{(t)})$
- 2b. Use the EM algorithm to learn the conditiona l probabilie s $\hat{\theta}_s^{(i)}$, using the original incomplete data D and the network structure $\hat{B}_s^{(i)}$ the graph union of all the resultant structures.

The Algorithm

3. Fuse the networks to create a single Bayesian network $<\hat{B}_{s}^{(0)}, \theta^{(t)}>$ as follows. Construct the network structure $B^{(0)}$ by taking the arc - union of the individual, network structures i.e. $B^{(0)} = \bigcup_{s=1\cdots M} B^{(0)}$. If the orderings imposed on the attributes by the various network structures are not consistent, then it is possible to construct $B^{(0)}$ by choosing one of the orderings(e.g. a total ordering consistent with the network structure with the maximum posterior probability), making all the other network structures consistent with this ordering by performing necessary arc - reversals, and then taking the graph union of all the resultant structures.

The Algorithm

- 4. If the convergene criteria is achieved \$top. Elsego to step 5
- 5. CreateM newcomplete datasets $\hat{D}_s^{(t+1)}$ by samplingM values for each missing values by sampling from the distribution obtained from last step

Question?

Any question?

Thank you!