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Learning probability distribution

Basic learning settings:
• A set of random variables 
• A model of the distribution over variables in X

with parameters 
• Data

s.t.
Objective: find parameters       that describe the data 
Assumptions considered so far:

– Known parameterizations
– No hidden variables 
– No-missing values
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Hidden variables
Modeling assumption: 
Variables                                       are related through  hidden 

variables 
Why to add hidden variables?
• More flexibility in describing the distribution
• Smaller parameterization of 

– New independences can be introduced via hidden 
variables

Example: 
• Latent variable models

– hidden classes (categories)
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Naïve Bayes with a hidden class variable

Introduction of a hidden variable can reduce the number of 
parameters defining           

Example: 
• Naïve Bayes model with a hidden class variable

• Useful in customer profiles
– Class value = type of customers
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Missing values

A set of random variables 
• Data
• But some values are missing

• Example: medical records
• We still want to estimate parameters of 
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Density estimation

Goal: Find the set of parameters
Estimation criteria:
– ML

Optimization methods for ML: gradient-ascent, conjugate 
gradient, Newton-Rhapson, etc.

• Problem: No or very small advantage from the structure of the 
corresponding belief network

Expectation-maximization (EM) method
– An alternative optimization method
– Suitable when there are missing or hidden values
– Takes advantage of the structure of the belief network
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General EM

The key idea of a method:
Compute the parameter estimates iteratively by performing the 

following two steps: 
Two steps of the EM:
1. Expectation step. Complete all hidden and missing variables 

with expectations for the current set of parameters
2. Maximization step. Compute the new estimates of        for 

the completed data 
Stop when no improvement possible
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EM
Let H – be a set of all variables with hidden or missing values
Derivation

),|(),,|(),|,( ξξξ ΘΘ=Θ DPDHPDHP

),|(log),,|(log),|,(log ξξξ Θ+Θ=Θ DPDHPDHP

),,|(log),|,(log),|(log ξξξ Θ−Θ=Θ DHPDHPDP

Average both sides with                              for ),',|( ξΘDHP 'Θ

),|(log),|,(log),|(log ',|',|',| ξξξ Θ−Θ=Θ ΘΘΘ HPEDHPEDPE DHDHDH

)'|()'|(),|(log ΘΘ+ΘΘ=Θ HQDP ξ

Log-likelihood of data

Log-likelihood of data
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EM algorithm
Algorithm (general formulation)

Initialize parameters
Repeat 
Set 
1. Expectation step

2. Maximization step

until  no or small improvement in  

Questions: Why this leads to the ML estimate ?
What is the advantage of the algorithm?
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EM algorithm

• Why is the EM algorithm correct?
• Claim: maximizing Q improves the log-likelihood
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Difference in log-likelihoods (current and next step)
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Kullback-Leibler (KL) divergence (distance between 2 distributions)
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EM algorithm

)'|'()'|()'|'()'|()'()( ΘΘ−ΘΘ+ΘΘ−ΘΘ=Θ−Θ HHQQll

Difference in log-likelihoods

Thus
by maximizing Q we maximize the log-likelihood

)'|'()'|()'()( ΘΘ−ΘΘ≥Θ−Θ QQll

)'|()'|()( ΘΘ+ΘΘ=Θ HQl

EM is a first-order optimization procedure
• Climbs the gradient
• Automatic learning rate

No need to adjust the learning rate !!!!
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EM advantages

Key advantages:
• In many problems (e.g. Bayesian belief networks)

– has a nice form and the maximization of Q can be carried in  
the closed form

• No need to compute Q before maximizing 
• We directly optimize 

– use quantities corresponding to expected counts
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Naïve Bayes with a hidden class and 
missing values

Assume:
• is modeled using a Naïve Bayes model with hidden class 

variable
• Missing entries (values) for attributes in the dataset D

)(XP

1X 2X nX…

Hidden class variable

Attributes are independent
given the class

C

CS 3710 Probabilistic Graphical Models

EM for the Naïve Bayes

• We can use EM to learn the parameters

• Parameters:
prior on class j
probability of an attribute i having value k given class j

• Indicator variables:
for example l, the class is j ; if  true (=1) else false (=0)
for example l, the class is j and the value of attrib i is k

because the class is hidden and some attributes are missing, the
values (0,1) of indicator variables are not known; they are 
hidden

H – a collection of all indicator variables
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EM for the Naïve Bayes model

• We can use EM to do the learning of parameters
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EM for Naïve Bayes model

• Computing derivatives of  Q for parameters and setting it to 0 
we get:

• Important:
– Use expected counts instead of counts !!!
– Re-estimate the parameters using expected counts
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EM for BBNs

• The same result applies to learning of parameters of any 
Bayesian belief network with discrete-valued variables  

• Again:
– Use expected counts instead of counts
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Gaussian mixture model
Probability of occurrence of  a data point  x  
is modeled as

where

=  probability of a data point coming 
from class C=i 

= class conditional density (modeled as a Gaussian)
for class I

Remember: C is hidden !!!!
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Mixture of Gaussians

• Density function for the Mixture of Gaussians model
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Gaussian mixture model

• In the Gaussian mixture Gaussians are not labeled
• We can apply EM algorithm:

– re-estimation based on the class posterior
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Gaussian mixture algorithm
• Special case: fixed covariance matrix for all hidden groups 

(classes) and uniform prior on classes
• Algorithm:

Initialize means        for all classes i
Repeat two steps until no change in the means:
1. Compute the class posterior for each Gaussian and each 

point (a kind of responsibility for a Gaussian for a point)

2. Move the means of the Gaussians to the center of the data, 
weighted by the responsibilities  
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Gaussian mixture model - example
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Gaussian mixture example
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Gaussian mixture model. Gradient ascent.

• A set of parameters 

Assume unit variance terms and fixed priors C
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EM versus gradient ascent

Gradient ascent                                EM
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K-means approximation to EM

Expectation-Maximization:
• posterior measures the responsibility of a Gaussian for every point

K- Means
• Only the closest Gaussian is made responsible for a point

Re-estimation of means

• Results in moving the means of  Gaussians to the center of the 
data points it covered in the previous step
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K-means algorithm

Useful for clustering data:
• Assume we want to distribute data into k different groups 

– Similarity between data points is measured in terms of the 
distance 

– Groups are defined in terms of centers (also called means)

K-Means algorithm:
Initialize k values of means (centers)
Repeat two steps until no change in the means:
– Partition the data according to the current means (using 

the similarity measure)
– Move the means to the center of the data in the current 

partition
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K-means algorithm

• Properties
– converges to centers minimizing the sum of center-point 

distances (local optima) 
– The result may be sensitive to the initial means’ values

• Advantages:
– Simplicity
– Generality – can work for an arbitrary distance measure

• Drawbacks:
– Can perform poorly on overlapping regions
– Lack of robustness to outliers (outliers are not covered)


