CS 3710 Advanced Topics in AI Lecture 2

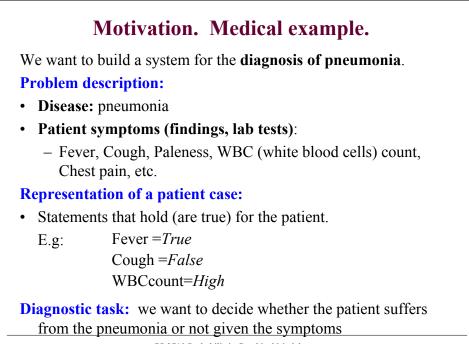
Probabilistic graphical models

Milos Hauskrecht

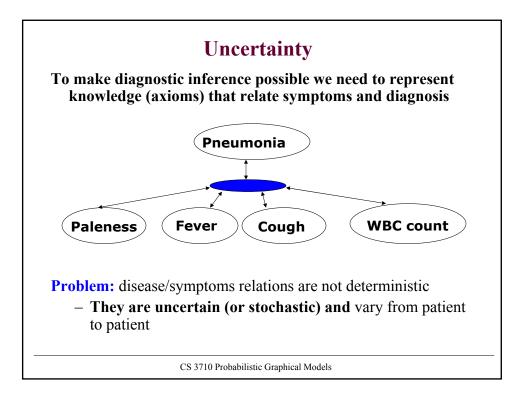
milos@cs.pitt.edu 5329 Sennott Square, x4-8845

http://www.cs.pitt.edu/~milos/courses/cs3710/

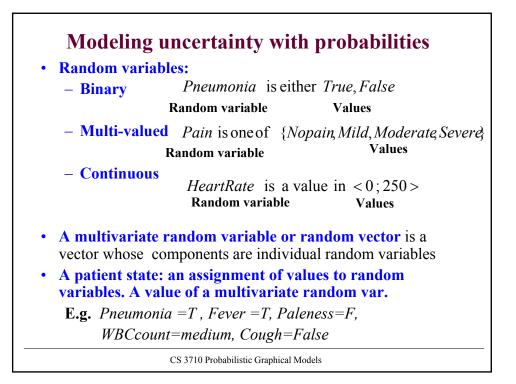
CS 3710 Probabilistic Graphical Models

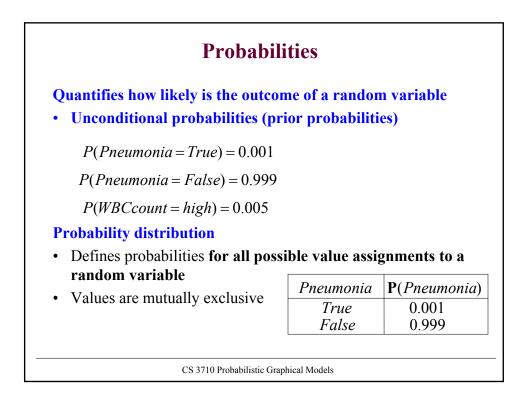


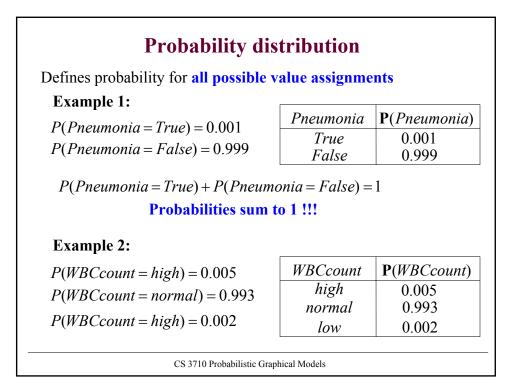
CS 3710 Probabilistic Graphical Models

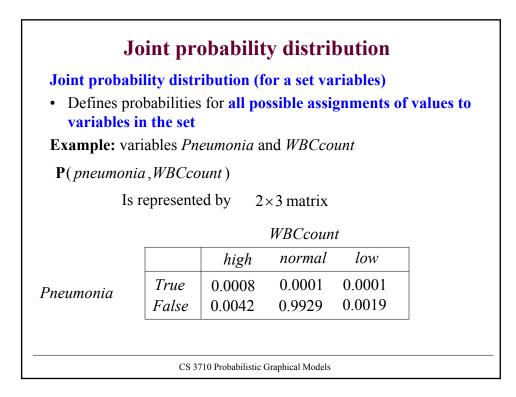


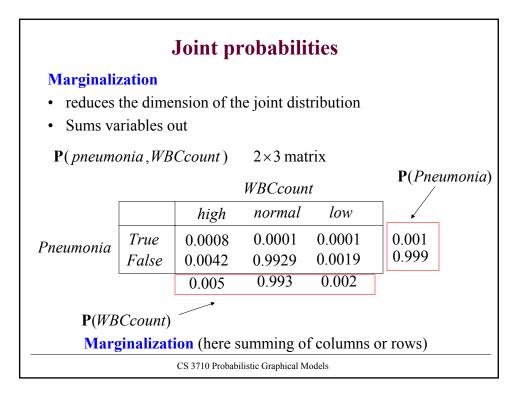


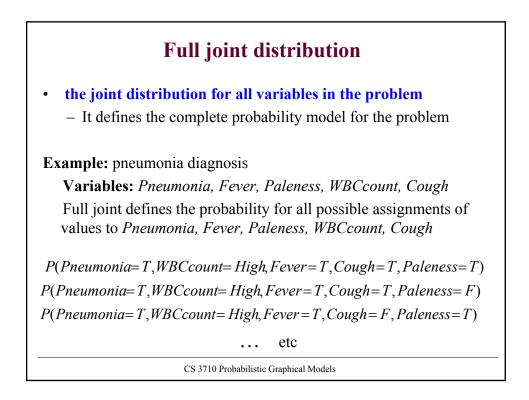












Conditional probabilities

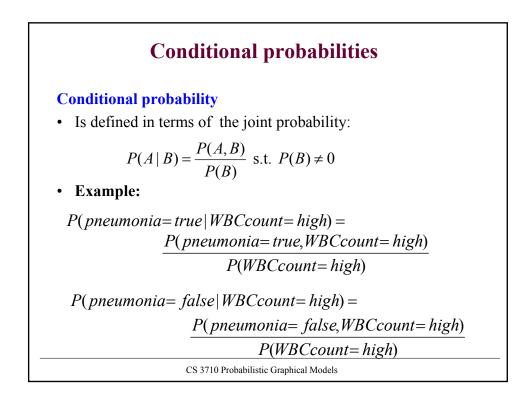
Conditional probability distribution

• Defines probabilities of outcomes of a variable, given a fixed assignment to some other variable values

P(*Pneumonia* = *true* | *WBCcount* = *high*)

P(*Pneumonia* | *WBCcount*) 3 element vector of 2 elements

	WBCcount				
Pneumonia		high	normal	low	
	True	0.08	0.0001	0.0001	
	False	0.92	0.9999	0.9999	
		1.0	1.0	1.0	
× *			count = hig	, ,	
$\underline{\qquad} + P(Pne$	umonia =	= false W.	<u>BCcount =</u>	<u>high)</u>	
		CS 3710 Probab	ilistic Graphical M	odels	



Conditional probabilities

• Conditional probability distribution.

$$P(A \mid B) = \frac{P(A, B)}{P(B)} \text{ s.t. } P(B) \neq 0$$

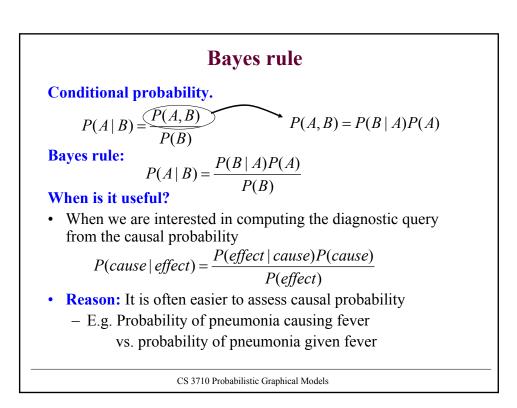
• **Product rule.** Joint probability can be expressed in terms of conditional probabilities

$$P(A,B) = P(A \mid B)P(B)$$

• Chain rule. Any joint probability can be expressed as a product of conditionals

$$P(X_{1}, X_{2}, \dots, X_{n}) = P(X_{n} | X_{1}, \dots, X_{n-1})P(X_{1}, \dots, X_{n-1})$$

= $P(X_{n} | X_{1}, \dots, X_{n-1})P(X_{n-1} | X_{1}, \dots, X_{n-2})P(X_{1}, \dots, X_{n-2})$
= $\prod_{i=1}^{n} P(X_{i} | X_{1}, \dots, X_{i-1})$
CS 3710 Probabilistic Graphical Models



Bayes rule

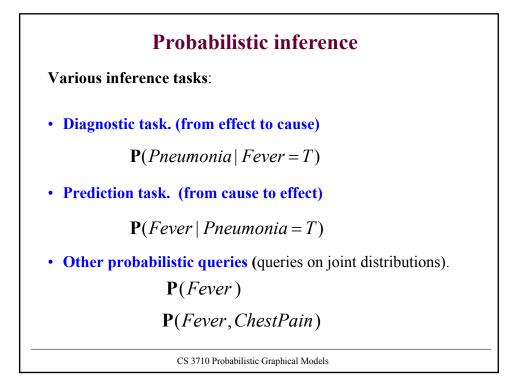
Assume a variable A with multiple values $a_1, a_2, \dots a_k$ Bayes rule can be rewritten as:

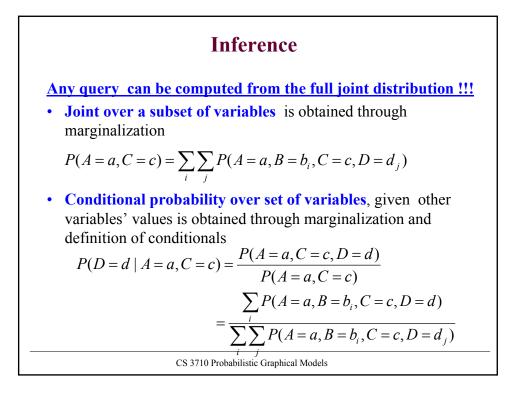
$$P(A = a_j | B = b) = \frac{P(B = b | A = a_j)P(A = a_j)}{P(B = b)}$$
$$= \frac{P(B = b | A = a_j)P(A = a_j)}{\sum_{i=1}^{k} P(B = b | A = a_j)P(A = a_j)}$$

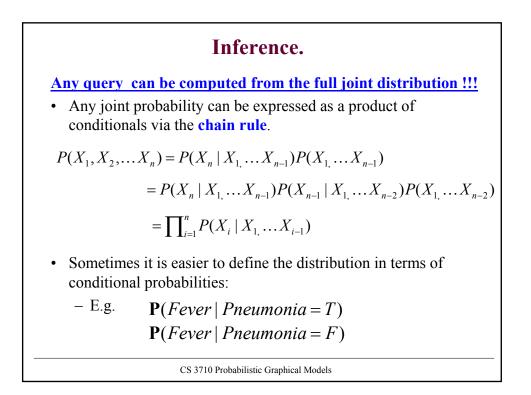
Used in practice when we want to compute:

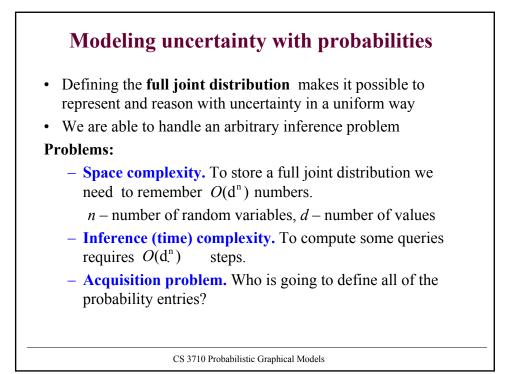
 $\mathbf{P}(A | B = b)$ for all values of $a_1, a_2, \dots a_k$

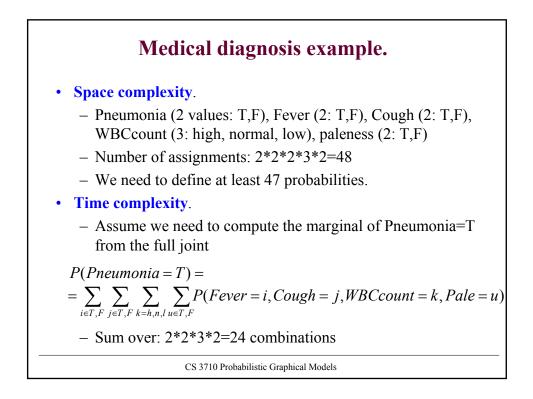
CS 3710 Probabilistic Graphical Models











Graphical models

Aim: alleviate the representational and computational bottlenecks

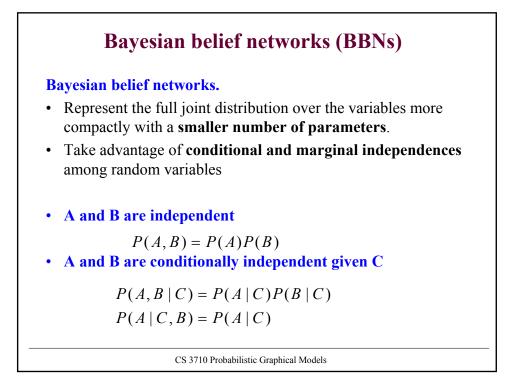
Idea: Take advantage of the structure, in particular, independences and conditional independences that hold among random variables

Two classes of models:

- Bayesian belief networks

- Modeling asymmetric (causal) effects and dependencies
- Markov random fields
 - Modeling symmetric effects and dependencies among random variables
 - Used often to model spatial dependences (image analysis)

CS 3710 Probabilistic Graphical Models



Alarm system example.

- Assume your house has an **alarm system** against **burglary**. You live in the seismically active area and the alarm system can get occasionally set off by an **earthquake**. You have two neighbors, **Mary** and **John**, who do not know each other. If they hear the alarm they call you, but this is not guaranteed.
- We want to represent the probability distribution of events:
 - Burglary, Earthquake, Alarm, Mary calls and John calls

