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CS 3710 Probabilistic Graphical Models

Motivation. Medical example.

We want to build a system for the diagnosis of pneumonia.
Problem description:

* Disease: pneumonia

+ Patient symptoms (findings, lab tests):

— Fever, Cough, Paleness, WBC (white blood cells) count,
Chest pain, etc.

Representation of a patient case:
» Statements that hold (are true) for the patient.
E.g: Fever =True
Cough =False
WBCcount=High

Diagnostic task: we want to decide whether the patient suffers
from the pneumonia or not given the symptoms
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Uncertainty

To make diagnostic inference possible we need to represent
knowledge (axioms) that relate symptoms and diagnosis

Pneumonia

v T

Problem: disease/symptoms relations are not deterministic

— They are uncertain (or stochastic) and vary from patient
to patient
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Modeling the uncertainty.
Key challenges:

* How to represent uncertain relations?
* How to manipulate such knowledge to make inferences?
— Humans can reason with uncertainty.

S
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Modeling uncertainty with probabilities
* Random variables:
— Binary Pneumonia 1is either True, False

Random variable Values

— Multi-valued Pain isoneof {Nopain Mild, Moderate Severé,

Random variable Values

— Continuous ) )
HeartRate is avalue in <0;250>

Random variable Values

* A multivariate random variable or random vector is a
vector whose components are individual random variables

* A patient state: an assignment of values to random
variables. A value of a multivariate random var.

E.g. Pneumonia =T, Fever =T, Paleness=F,
WBCcount=medium, Cough=False
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Probabilities

Quantifies how likely is the outcome of a random variable
* Unconditional probabilities (prior probabilities)

P(Pneumonia=True)=0.001

P(Pneumonia = False) =0.999

P(WBCcount = high) =0.005
Probability distribution

» Defines probabilities for all possible value assignments to a
random variable

Pneumonia |P(Pneumonia)

True 0.001
False 0.999

» Values are mutually exclusive
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Probability distribution

Defines probability for all possible value assignments

Example 1:

P(Pneumonia=True)=0.001
P(Pneumonia = False) =0.999

Pneumonia |P(Pneumonia)
True 0.001
False 0.999

P(Pneumonia = True)+ P(Pneumonia = False) =1
Probabilities sum to 1 !!!

Example 2:

P(WBCcount = high) = 0.005
P(WBCcount = normal) =0.993

P(WBCcount = high) =0.002

WBCcount | P(WBCcount)
high 0.005
normal 0.993
low 0.002
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Joint probability distribution

Joint probability distribution (for a set variables)
* Defines probabilities for all possible assignments of values to

variables in the set

Example: variables Pneumonia and WBCcount

P( pneumonia ,WBCcount)

Is represented by 2 x 3 matrix
WBCcount
high  normal  low
Pneumonia True | 0.0008 0.0001 0.0001
False | 0.0042 0.9929 0.0019
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Joint probabilities

Marginalization
» reduces the dimension of the joint distribution
* Sums variables out

P(pneumonia ,WBCcount)  2x3 matrix

P(Pneumonia)
WBCcount
high ~ normal  low
Preumonia | 174€ | 0.0008  0.0001 0.0001 0.001
False | 0.0042 0.9929 0.0019 0.999
0.005 0.993  0.002 ‘
P(WBCcount)

Marginalization (here summing of columns or rows)
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Full joint distribution

+ the joint distribution for all variables in the problem
— It defines the complete probability model for the problem

Example: pneumonia diagnosis
Variables: Pneumonia, Fever, Paleness, WBCcount, Cough

Full joint defines the probability for all possible assignments of
values to Pneumonia, Fever, Paleness, WBCcount, Cough

P(Pneumonia=T,WBCcount= High, Fever=T,Cough=T, Paleness=T)
P(Pneumonia=T ,WBCcount= High, Fever=T,Cough=T, Paleness=F)
P(Pneumonia=T,WBCcount= High, Fever=T,Cough=F, Paleness=T)

etc
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Conditional probabilities

Conditional probability distribution
» Defines probabilities of outcomes of a variable, given a fixed
assignment to some other variable values

P(Pneumonia = true | WBCcount = high)

P(Pneumonia| WBCcount) 3 element vector of 2 elements
WBCcount

high  normal  low

True 0.08 0.0001  0.0001

False | 0.92 0.9999 0.9999

1.0 1.0 1.0

Pneumonia

P(Pneumonia = true | WBCcount = high)
+ P(Pneumonia = false| WBCcount = high)

CS 3710 Probabilistic Graphical Models

Conditional probabilities

Conditional probability
* Is defined in terms of the joint probability:

P(4,B)

P(4|B)= 5)

s.t. P(B)#0

* Example:

P(pneumonia=true| WBCcount= high) =
P(pneumonia= true, WBCcount= high)

P(WBCcount= high)

P(pneumonia= false| WBCcount= high) =
P(pneumonia= false,WBCcount= high)
P(WBCcount= high)
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Conditional probabilities

* Conditional probability distribution.
P(4,B

s.t. P(B)#0

* Product rule. Joint probability can be expressed in terms of
conditional probabilities

P(A,B)=P(A|B)P(B)

* Chain rule. Any joint probability can be expressed as a
product of conditionals

P(X,X,,..X)=PX,| X, .. X, )PX, ..X,_)
=P(X, | X, ..X, )P(X, | X ..X,,)P(X, ..
=H::1P(Xl'|Xl,"'Xi—l)

° Xn—2)
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Bayes rule

Conditional probability.
p4| By ~LAB) P(4,B) = P(B| A)P(A)
P(B)
Bayes rule:
P(B| A)P(A
P(A4|B) :—( le(;) (4)
When is it useful?

* When we are interested in computing the diagnostic query
from the causal probability

P(cause| effect) = P(effect | cause) P(cause)
P(effect)
* Reason: It is often easier to assess causal probability
— E.g. Probability of pneumonia causing fever
vs. probability of pneumonia given fever
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Bayes rule

Assume a variable A with multiple values @,,a,,...a;
Bayes rule can be rewritten as:

P(B=b|Ad=a,)P(A=a,)
P(B=b)
P(B=b|A=a,)P(A=a,)
' P(B=b|A=a,)P(A=a,)

P(Ad=a,|B=b)=

Used in practice when we want to compute:

P(4A|B=b) forall valuesof 4,,a,,...q,
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Probabilistic inference

Various inference tasks:

* Diagnostic task. (from effect to cause)

P(Pneumonia| Fever=T)
* Prediction task. (from cause to effect)

P(Fever| Pneumonia=T)

* Other probabilistic queries (queries on joint distributions).

P(Fever)
P(Fever,ChestPain)
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Inference

Any query can be computed from the full joint distribution !!!

» Joint over a subset of variables is obtained through
marginalization

P(A=a,C=c)=) Y P(A=a,B=b,C=c,D=d)
i

» Conditional probability over set of variables, given other
variables’ values is obtained through marginalization and
definition of conditionals

P(D=d|A:a,czc):P(A=a,C=c,D:d)

P(A=a,C=c)
Y P(A4=a,B=b,C=c,D=d)

ZZZP(Aza,szi,Czc,Dzdj)

7
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Inference.

Any query can be computed from the full joint distribution !!!

* Any joint probability can be expressed as a product of
conditionals via the chain rule.

P(X,,X,,... X,)=P(X, | X, ... X, )P(X, ... X, )
=P(X, | X, .. X, )P(X, | X, ... X, )P(X, ... X, ,)

=11 P& 1X, ..X. )

* Sometimes it is easier to define the distribution in terms of
conditional probabilities:

- Eg P(Fever| Pneumonia=T)
P(Fever| Pneumonia = F)
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Modeling uncertainty with probabilities

* Defining the full joint distribution makes it possible to
represent and reason with uncertainty in a uniform way

« We are able to handle an arbitrary inference problem
Problems:

— Space complexity. To store a full joint distribution we
need to remember O(d") numbers.

n —number of random variables, d — number of values
— Inference (time) complexity. To compute some queries
requires O(d")  steps.
— Acquisition problem. Who is going to define all of the
probability entries?

CS 3710 Probabilistic Graphical Models

Medical diagnosis example.

* Space complexity.
— Pneumonia (2 values: T,F), Fever (2: T,F), Cough (2: T,F),
WBCcount (3: high, normal, low), paleness (2: T,F)
— Number of assignments: 2*2*2*3%2=48
— We need to define at least 47 probabilities.
* Time complexity.
— Assume we need to compute the marginal of Pneumonia=T
from the full joint
P(Pneumonia=T) =
= Z z Z ZP(Fever =1,Cough = j,WBCcount = k, Pale = u)

ieT ,F jeT ,F k=h,n,l uel ,F

— Sum over: 2*2*3*2=24 combinations
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Graphical models

Aim: alleviate the representational and computational
bottlenecks

Idea: Take advantage of the structure, in particular,
independences and conditional independences that hold
among random variables

Two classes of models:
— Bayesian belief networks
* Modeling asymmetric (causal) effects and dependencies
— Markov random fields

* Modeling symmetric effects and dependencies among
random variables

 Used often to model spatial dependences (image
analysis)
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Bayesian belief networks (BBNs)

Bayesian belief networks.

» Represent the full joint distribution over the variables more
compactly with a smaller number of parameters.

» Take advantage of conditional and marginal independences
among random variables

* A and B are independent
P(A,B)=P(A)P(B)
* A and B are conditionally independent given C
P(A,B|C)=P(A|C)P(B|C)
P(A|C,B)=P(A4]|C)
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Alarm system example.

* Assume your house has an alarm system against burglary.
You live in the seismically active area and the alarm system
can get occasionally set off by an earthquake. You have two
neighbors, Mary and John, who do not know each other. If
they hear the alarm they call you, but this is not guaranteed.

* We want to represent the probability distribution of events:
— Burglary, Earthquake, Alarm, Mary calls and John calls

Causal relations

Gomesii Gy
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Bayesian belief network.

1. Directed acyclic graph
* Nodes = random variables
Burglary, Earthquake, Alarm, Mary calls and John calls
» Links = direct (causal) dependencies between variables.

The chance of Alarm is influenced by Earthquake, The
chance of John calling is affected by the Alarm

a

C atarm)

N\

Gomncans)  (Marycans
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Bayesian belief network.

2. Local conditional distributions
» relate variables and their parents

-

@ P(A|B,E)

P(J|A) P(M[A)

Gomcats) — (Marycans
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Bayesian belief network.

P(B) P(E)
T F T F
Burglary )| 0.001 0.999 | ( Earthquake ) |0.002 0.998
P(A|B,E)
B E T F
T T | 0.95 0.05
T F | 0.94 0.06
F T | 0.29 0.71
F F | 0.001 0.999

P(IA)

\ P(M|A)
Al T F Al T F

T| 0.90 0.1
F| 0.05 0.95

m -
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Bayesian belief networks (general)

Two components: B =(S,0) E

() B
* Directed acyclic graph \ f
— Nodes correspond to random variables A
— (Missing) links encode independences <>/
J M
* Parameters
— Local conditional probability distributions

for every variable-parent configuration P(AIB/E)
B E T F
P(X. | pa(X,
(X, [ pa(X))) T T |0.95 0.05
. T F | 0.94 0.06
Where: F T |029 071
pa(X;) - stand for parents of X, F F | 0.0010.999
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Full joint distribution in BBNs

Full joint distribution is defined in terms of local conditional
distributions (obtained via the chain rule):

P(X,,X,,..X,)= HP(X,' | pa(X,))

i=l,.n

OB E
Example: \ f
Assume the following assignment A
of values to random variables (5/ E
B=T,E=T.A=T.J=T.M =F J M

Then its probability is:
P(B=T,E=T,A=T,J=T,M =F) =
P(B=T)P(E=T)P(A=T|B=T,E=T)P(J=T|A=T)P(M =F| A=T)
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Bayesian belief networks (BBNs)

Bayesian belief networks

» Represent the full joint distribution over the variables more
compactly using the product of local conditionals.

* But how did we get to local parameterizations?
Answer:

* Graphical structure encodes conditional and marginal
independences among random variables

* A and B are independent P(A4,B)= P(A)P(B)
* A and B are conditionally independent given C
P(A|C,B)=P(A4]|C)
P(A,B|C)=P(A|C)P(B|C)

e The graph structure implies the decomposition !!!
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Independences in BBNs

3 basic independence structures:

1. Burglary

-@
L

Gonncalts
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Independences in BBNs

Burglary

=

1. JohnCalls is independent of Burglary given Alarm
P(J|A,B)=P(J | A)
P(J,B|A)=P(J|A)P(B| A)
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Independences in BBNs

1. 2. 3.
O

2. Burglary is independent of Earthquake (not knowing Alarm)

Burglary and Earthquake become dependent given Alarm !!
P(B,E) = P(B)P(E)
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Independences in BBNs

Burglary 2. 3.
Eartng o

i

3. MaryCalls is independent of JohnCalls given Alarm
P(J|A,M)=P(J | A)
P(J,M | 4)=P(J | A)P(M | 4)
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Independences in BBN

« BBN distribution models many conditional independence
relations among distant variables and sets of variables

» These are defined in terms of the graphical criterion called d-
separation

* D-separation and independence
— Let X,Y and Z be three sets of nodes

— If X and Y are d-separated by Z, then X and Y are
conditionally independent given Z

* D-separation :
— A is d-separated from B given C if every undirected path
between them is blocked with C
* Path blocking

— 3 cases that expand on three basic independence structures
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Undirected path blocking

A is d-separated from B given C if every undirected path
between them is blocked

* 1. Path blocking with a linear substructure

Z
XOm===O—@—O----0 v

] ZinC i
XmA YinB
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Undirected path blocking

A is d-separated from B given C if every undirected path
between them is blocked

* 2. Path blocking with the wedge substructure
Z

XO-==-T gjpc O----O 7

Xin A Y inB
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Undirected path blocking

A is d-separated from B given C if every undirected path
between them is blocked

» 3. Path blocking with the vee substructure

Xin A YinB

X O-==-0 O>----0 "

Z or any of its descendants not in C
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Independences in BBNs

/

Gomesii Gy

+ Earthquake and Burglary are independent given MaryCalls
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Independences in BBNs

@
= =

» Earthquake and Burglary are independent given MaryCalls F
* Burglary and MaryCalls are independent (not knowing Alarm) ?
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Independences in BBNs

/

Gomesii Gy

+ Earthquake and Burglary are independent given MaryCalls F
* Burglary and MaryCalls are independent (not knowing Alarm) F
* Burglary and RadioReport are independent given Earthquake — ?
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Independences in BBNs

@
= =

Earthquake and Burglary are independent given MaryCalls F
Burglary and MaryCalls are independent (not knowing Alarm) F
Burglary and RadioReport are independent given Earthquake T
Burglary and RadioReport are independent given MaryCalls ?
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Independences in BBNs

/

Gomesii Gy

Earthquake and Burglary are independent given MaryCalls F
Burglary and MaryCalls are independent (not knowing Alarm) F
Burglary and RadioReport are independent given Earthquake T
Burglary and RadioReport are independent given MaryCalls F
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Bayesian belief networks (BBNs)

Bayesian belief networks

* Represents the full joint distribution over the variables more
compactly using the product of local conditionals.

* So how did we get to local parameterizations?

P(X,,X,,..X,)= HP(Xi | pa(X,))

i=l,.n

* The decomposition is implied by the set of independences
encoded in the belief network.
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Full joint distribution in BBNs

QB E
Rewrite the full joint probability using the f
A

product rule:

PB=T,E=T,A=T,J=T,M=F)= O/J \CD M
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Full joint distribution in BBNs

B E
Rewrite the full joint probability using the
product rule: A
PB=T,E=T,A=T,J=T,M=F)= J M

=P(J=T|B=T,E=T,A=T,M=F)PB=T,E=T,A=T,M =F)
=P(J=T|A=T)PB=T,E=T,A=T,M =F)

CS 3710 Probabilistic Graphical Models

Full joint distribution in BBNs

Q E
Rewrite the full joint probability using the
product rule:

e
A
PB=T,E=T,A=T,J=T,M =F)= O/J \CD M

=P(J=T|B=T,E=T,A=T,M=F)P(B=T,E=T,A=T,M=F)

—P(J=T|A=T)P(B=T,E=T,A=T,M = F)
PM=F|B=T,E=T,A=T)P(B=T,E=T,A=T)
PM=F|A=T)P(B=T,E=T,A=T)

CS 3710 Probabilistic Graphical Models




Full joint distribution in BBNs

B E
Rewrite the full joint probability using the
product rule: A
PB=T,E=T,A=T,J=T,M=F)= J M

=P(J=T|B=T,E=T,A=T,M=F)PB=T,E=T,A=T,M =F)
=P(J=T|A=T)PB=T,E=T,A=T,M =F)
PM=F|B=T,E=T,A=T)P(B=T,E=T,A=T)
PM=F|A=T)P(B=T,E=T,A=T)
P(A=T|B=T,E=T)P(B=T,E=T)
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Full joint distribution in BBNs

Q E
Rewrite the full joint probability using the
product rule:

e
A
PB=T,E=T,A=T,J=T,M =F)= O/J \CD M

=P(J=T|B=T,E=T,A=T,M=F)P(B=T,E=T,A=T,M=F)
—P(J=T|A=T)P(B=T,E=T,A=T,M = F)
PM=F|B=T,E=T,A=T)P(B=T,E=T,A=T)
PM=F|A=T)P(B=T,E=T,A=T)
P(A=T|B=T,E=T)P(B=T,E=T)
PB=T)PE=T)
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Full joint distribution in BBNs

B E
Rewrite the full joint probability using the
product rule: A
PB=T,E=T,A=T,J=T,M=F)= J M

=P(J=T|B=T,E=T,A=T,M=F)PB=T,E=T,A=T,M =F)
=P(J=T|A=T)PB=T,E=T,A=T,M =F)
PM=F|B=T,E=T,A=T)P(B=T,E=T,A=T)
PM=F|A=T)P(B=T,E=T,A=T)
P(A=T|B=T,E=T)P(B=T,E=T)
P(B T)P(E 7)
—P(J T|A=D)PAM=F|A=T)AA=T|B=T,E= T)P(B T)P(E T)
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