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Introduction

Problem:

* We have distribution P(x) but inference is hard to
compute.

Previous solutions:

» Approximate energy functional: Bethe, Kikuchi

Introduction

New idea:
* Directly optimize the energy functional introducing a

distribution Q(x) defined on the same domain of
variables as P which incorporates some constraints.

* Objective: We want to find Q(x) which is the best
approximation of P(x) and use QJ(x) to make inferences.

* Find O € Q that minimizes F(P,Q)




Mean Field Approximation

Assumptions:

* (O(x) is our mean field approximation.

* Variables in the Q distribution are independent
variables X,

* In the standard mean field approach, Q is completely
factorized:

Q(x) = H Qi(xi)

Mean Field Approximation

What happens when we apply mean field?

P(x) o)
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Mean Field Approximation

F(P,Q)==) >, 0(x,)log ¢(x,) +Z O(x)logQ(x)

z 2
O(x) = H 0,(x,)
E(P.0)=-3, F00)logdx) =~ z[H ocx, >]log¢<x¢>
H(Q)= —ZX: O(x)logQ(x) = —Zx: (1,:! Q(xi)jlog[g Q(%)J
-3 Mot [T o)
==Y 0(x)log O(x)
=ZIHX;,<x,-)

Mean Field Approximation
F(P.Q)=-3, 30(x,)log(x,)+3 0(x)0g0(x)

E(P,0)=-) ZLHQ(x )Jloggbm)

geF x5 \ xex,

H(Q) = —Z Y O(x)log O(x,)
Task: find Q(x)= H Q,(x;) minimizing F(P,Q)

such that Z Ox) =1

Solving: build a Lagrangian, differentiate and set to 0 !




Mean Field Approximation

The distribution Q(x;,) is locally optimal solution given

Ox)), ..., O(x;. 1), O(x;. ), ..., Ox,), 1

O(x,) = Zlexp {Z E, [Ing|x, ]} MF-equation

geF

Where Z; is a local normalizing constant and E,/In ¢|x,/ is the
conditional expectation given the value x;.

o

Mean Field Approximation

Locality:

* Only local operations are needed for iteration of the
MF-equations.

* In other words, only neighboring variables are needed.

simplified

0(x,) = Zl_exp{ S E,lng,.x,)

] MF-equation
¢: X, eScope (]

where U, = Scope [¢]

Calculation of Q(X,) depends
only on clusters X; belongs to




Mean Field Approximation

Solution: Iterate mean field equations

1 MF-equati
0(x) = Zexp{ Y. Eolin ¢<U¢’xz->]} smplified

¢: X, eScope (]

* Converge to a fixed point.

Problem: convergence to a local optima.

Mean Field Approximation

Halft et al. paper:
» Optimize the KL divergence instead of the free energy

D(Q|P)= EQ(log %}

D(Q|P)=E,(log O(x))- E,(log P(x))

D(Q|P)=E,(log O(X,))- E,(log P(X,))
+ EQ(log Q(Xz))_ EQ(log P(Xi | )?1))
Assume: P(X)=P(X,|X,)P(X))
D(Q|P)=E, ¢ (log O(X,))-E,;,(log P(X,)
+ EQ(X,.)(IOg Q(Xl))_ EQ(X)(log P(X, | )?,))




Mean Field Approximation

Haft et al. paper:
* Optimize the KL divergence instead of the free energy

— — Does not depend
D(Q|P)=|Eyy,(log QX)) Ey y,(log P(X,) == onX,

+ EQ(X,)(log Q(Xi))_ EQ(X)(log P(X, | yl))

E\epends on X

EQ(X,.)(IOg Q(Xi))_EQ(X)(log P(X, |A7l))

oD(Q|P) _ @
00(X;) 00(X))

Subject to > ox)=1
X;

Mean Field Approximation

Haft et al. paper:
0(x,) o exp(E, 5, (log P(X, |X)))= exp (log P(X, | X0, s,
MF-equation

Locality:

O(x,) o= exp(log P(x; M), | ganlI')‘;iqf‘.f:g"n

where M is the Markov boundary.




Mean Field Approximation

Algorithm:

Procedure Mean-Field (
JE, [/ / factors that define Px
Qo // Initial choice of 2
)
Q= Qo
Unprocessed «— X
while Unprocessed #
Choose X, from Unprocessed
Qt‘iu‘{ YT) = Q(\l)
for z; € Val(.X;) do
Qi) — exp {Zv:'r:,\'.-Esi'o.un'[:b} EQ“" d":n.‘!}
Normalize (2{.X;) to sum to one
if Qua( X)) # Q(X5) then
Unprocessed «— Unprocessed ) [U,,J,;A\“r-Smp.;M-[Scope{r;}])
Unprocessed « Unprocessed — { X}
return ¢}

Mean Field Approximation

Converges to one of typically many local minima.

Easy to compute but sometimes is not good enough.

It cannot describe complex posteriors (eg. XOR)

We must use a richer class of distributions Q.




Structured Mean Field

Exploiting Substructures

» If we use a distribution Q that can capture some of the
dependencies in P, we can get a better approximation.

Two possible substructures for O
O@@,@ OEOEORONOEO=0=0

ONOR®,

ORON®,

GOO® © O DECEORON
Independent
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ORO

Distribution P Distribution Q1 Distribution Q2

Structured Mean Field

Exploiting Substructures

1
Q(x)—zlj[ v,

where y; is a factor with Scope/y;] = C,.

and assume we have the set of potential scopes:

(Ccyj=1..J}




Structured Mean Field

Exploiting Substructures
Given: Q(X) = L1_[ v,
ZQ J

And restriction: Z v (c;)=1
Then the potential y; is locally optimal when:

w,(c;)oc exp{EQ[ln Py |cj]—ZEQ[1nl//k |cj]}

k#j

Structured Mean Field

Exploiting Substructures

* Locality as Mean Fields:

wi(c,) = exp{ZEQ[Mcj]— 3 E,lny, |cj]}

jed, vieB,
where

A, ={peF:Q=U, LC))}
and

B,={y,: 0 (C, LC))




Structured Mean Field

Updating:

* Calculation of Q(X,) depends on clusters where X, belongs
to. And on clusters overlapping C; (in Q). And on scopes
C dependent of C; (in Q also).

C

@
A )
G
000 ==

Distribution P Distribution O

Structured Mean Field

In other words, we want to compute 4, :
Cr=1A4,,4,,} C;={A,,4,5) Cs={4,,4,,} ...
4; = Clusters X, belongs to (as standard mean field) i.e. {4, , 4, ,} and {4, 4, }

Clusters overlapping C; and those from PF. For example in this case 4, , in
C, overlaps in Py, thus we need to consider {4, , 4, ;} and {4, ; 4, ,}. The same
occurs with 4, ;and 4, ,

B; = Clusters in Q dependent on C,. In this example every C is independent from
each other, therefore B; is empty.

O-O-E-®
(G -

Distribution P Distribution O




Structured Mean Field

Again we want to compute 4, ;, assume the new substructure in Q:
Now we choose C; = {4, 4,,4,;4,,4,,} C,={A4;,4,,4,;4, 4}
A; = We consider the same clusters as before but now we add those overlapping

J
with 4, ,, i.e. {4, 4; } and {4, 4, ,}
B; = Clusters in Q dependent on C,. Now we have 4, , (in C)) overlapping with 4, ,

(in C;). We need to subtract 4, ; since we already used it in 4.

2
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Structured Mean Field

Another example, we want to compute a,b:
Now we choose C, = {4 B} C,={CD}

4;= {48} {AD} {B C}}
B; = Empty, since C, and C, do not overlap.

Distribution O

Distribution P




Structured Mean Field

Exploiting Substructures

+ Updates are relatively costly due to the consideration of
structure.

Two approaches for updates:
* Sequential: Choose a factor and update it, then perform
inference. It will converge.
 Parallel: Update all factors, then inference. It doesn’t
guarantee convergence.

Structured Mean Field

Example:
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Structure (b) can be exploited:

O(4,B,C.D)= lel(A,B)wz(c,D)
¢

0'(4,B,C,D) = ZI¢AB(A,B)¢CD(C,D)V/'1 (Dy " (By', (Chy", (D)
0

Structure (c¢) cannot be exploited (redundant)




Structured Mean Field

Refinement Theorem:

* Refines an initial approximating network by factorizing its
factors into a product of factors and potentials from P;.

* y, can be written as the product of two sets of factors:
* Those in P, that are subsets of the scope of y,.

* Partially “covered” factors in P by the scope of y; and
other factors in Q.

Weigthed Mean Field

General Mixture Weights
* Idea:

Instead of selecting one particular MF solution, we
form a weighted average (a mixture) of several solutions.

* Enumerate the different MF-solutions by a hidden
variable a, O(X|a).

» Assign mixture weights O(a).

0(X) =2 0(X|a)Q(a)




Weigthed Mean Field

Given 0(X) =) 0(X|a)Q(a)

under the constraint Z O(a)=1

Determine Q(a) such that D(Q||P) is minimized:

P(X|a)
O(a) < exp| — <10g > }
{ PX) [ oxiay

« exp[- D(O(X | a) || P(X))]

Weigthed Mean Field

General Mixture Weights

* The previous formula means that different solutions
O(Xla) contribute to the global distribution Q(X)
according to their distance to P(X).

* Note however, we are not optimizing O(X|a)
simultaneously.




Weigthed Mean Field
Example: Noisy-OR

& —®—®

first second marginals of | exact
MF-solution MF-solution MF-mixture | marginals
Q(1Xa=La=1) | Q(IXs=1,a=2) | Q(IXs=1) | P(|Xs=1)
Xi= 0.137 0.973 0.555 0.528
Xo=1 0.973 0.137 0.555 0.528
P(X1, X2 X5 = 1)
compared to Xy — Xy —
Xy, Xo|Xs = 1) A2 =0 A=t
- P: 0.005 P: 0.466
== Q:  0.023 Q: 0422
Y =1 P: 0.466 P:  0.063
1= Q: 0.422 Q: 0.133

Variational Methods

Idea:

* Introducing auxiliary variational parameters that help in

simplifying a complex objective function.

In(x) <Ax -In(A) - 1

This upper bound allows
to approximate /n(x) with
a term that is linear in x.




Thank you!

Mean Field Approximation

Example from Wiegerinck:

)
Qoss) e
e 7 G
(e 0 )
EHEE >
(a) Target distribution (b) KL = 0.43
Noisy-OR from Hatft et al.:
first exact
MF-solution marginals
Q(-| Xs=1) P(-|Xs=1)
X,=1 0.137 0.528
Xo=1 0.973 0.528




