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Introduction

Problem:

• We have distribution P(x) but inference is hard to 
compute.

Previous solutions:

• Approximate energy functional: Bethe, Kikuchi

Introduction

New idea:

• Directly optimize the energy functional introducing a 
distribution Q(x) defined on the same domain of 
variables as P which incorporates some constraints.

• Objective: We want to find Q(x) which is the best 
approximation of P(x) and use Q(x) to make inferences.

• Find that minimizes F(P,Q)Q∈Q
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Mean Field Approximation

Assumptions:

• Q(x) is our mean field approximation.
• Variables in the Q distribution are independent 

variables Xi.
• In the standard mean field approach, Q is completely 

factorized:
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Mean Field Approximation

What happens when we apply mean field?

P(x) Q(x)
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Mean Field Approximation
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Mean Field Approximation

Task: find                                    minimizing  F(P,Q)

such that
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Solving: build a Lagrangian, differentiate and set to 0 !
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Mean Field Approximation

The distribution Q(xi) is locally optimal solution given 
Q(x1),…,Q(xi-1),Q(xi+1),…,Q(xn), if:

Where Zi is a local normalizing constant and EQ[ln φ|xi] is the 
conditional expectation given the value xi.

MF-equation[ ]
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Mean Field Approximation

Locality:
• Only local operations are needed for iteration of the 

MF-equations.
• In other words, only neighboring variables are needed.

[ ]








= ∑
∈ ][:

),(lnexp1)(
φφ

φφ
ScopeX

iQ
i

i
i

xUE
Z

xQ
MF-equation 
simplified

)( iXQCalculation of depends 
only on clusters Xi belongs to

where Uφ = Scope [φ]
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Mean Field Approximation

Solution: Iterate mean field equations

• Converge to a fixed point.

Problem: convergence to a local optima. 
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Mean Field Approximation

Haft et al. paper:
• Optimize the KL divergence instead of the free energy
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Mean Field Approximation

Haft et al. paper:
• Optimize the KL divergence instead of the free energy
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Mean Field Approximation

Haft et al. paper:
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where M is the Markov boundary.

MF-equation 
simplified
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Mean Field Approximation

Algorithm:

Mean Field Approximation

• Converges to one of typically many local minima.

• Easy to compute but sometimes is not good enough.

• It cannot describe complex posteriors (eg. XOR)

• We must use a richer class of distributions Q.
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Structured Mean Field

Exploiting Substructures
• If we use a distribution Q that can capture some of the 

dependencies in P, we can get a better approximation.

A1,2 A1,3 A1,4

A2,2 A2,3 A2,4

A3,2 A3,3 A3,4

A4,2 A4,3 A4,4

A1,1

A2,1

A3,1

A4,1

Distribution P

A1,2 A1,3 A1,4

A2,2 A2,3 A2,4

A3,2 A3,3 A3,4

A4,2 A4,3 A4,4

A1,1

A2,1

A3,1

A4,1

Distribution Q2

Independent 
chains

A1,2 A1,3 A1,4

A2,2 A2,3 A2,4

A3,2 A3,3 A3,4

A4,2 A4,3 A4,4

A1,1

A2,1

A3,1

A4,1

Distribution Q1

Two possible substructures for Q

Exploiting Substructures

∏=
j

j
QZ

Q x ψ1)(

where ψj is a factor with Scope[ψj] = Cj.

and assume we have the set of potential scopes:

{Cj ⊆ χ: j = 1,…,J}

Structured Mean Field
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Exploiting Substructures
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Then the potential ψj is locally optimal when:
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Structured Mean Field

Exploiting Substructures

• Locality as Mean Fields:
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Structured Mean Field
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Updating:
• Calculation of Q(Xi) depends on clusters where Xi belongs 

to. And on clusters overlapping Cj (in Q). And on scopes 
Ck dependent of Cj (in Q also).

A1,2 A1,3 A1,4

A2,2 A2,3 A2,4

A3,2 A3,3 A3,4

A4,2 A4,3 A4,4

A1,1

A2,1

A3,1

A4,1

Distribution P

A1,2 A1,3 A1,4

A2,2 A2,3 A2,4

A3,2 A3,3 A3,4

A4,2 A4,3 A4,4

A1,1

A2,1

A3,1

A4,1

Distribution Q

Cj

Structured Mean Field

In other words, we want to compute A1,1:
C1 = {A1,1 A1,2 } C2 ={A1,2 A1,3}    C3 = {A2,1 A2,2} ….
Aj = Clusters Xi belongs to (as standard mean field) i.e. {A1,1 A1,2} and {A1,1 A2,1}

Clusters overlapping Cj and those from PF. For example in this case A1,2 in      
C1 overlaps in PF, thus we need to consider {A1,2 A1,3} and {A1,1 A2,2}. The same 
occurs with A1,3 and A1,4

Bj = Clusters in Q dependent on Cj. In this example every C is independent from 
each other, therefore Bj is empty. 

A1,2 A1,3 A1,4

A2,2 A2,3 A2,4

A3,2 A3,3 A3,4

A4,2 A4,3 A4,4

A1,1

A2,1

A3,1

A4,1

Distribution P

A1,2 A1,3 A1,4

A2,2 A2,3 A2,4

A3,2 A3,3 A3,4

A4,2 A4,3 A4,4

A1,1

A2,1

A3,1

A4,1

Distribution Q

C1

Structured Mean Field
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Again we want to compute A1,1, assume the new substructure in Q:
Now we choose C1 = {A1,1 A1,2 A1,3 A1,4 A2,1}    C2 = {A2,1 A2,2 A2,3 A2,4}
Aj = We consider the same clusters as before but now we add those overlapping 

with A2,1, i.e. {A2,1 A3,1} and {A2,1 A2,2}
Bj = Clusters in Q dependent on Cj. Now we have A2,1 (in C1) overlapping with A2,1

(in C2). We need to subtract A2,1 since we already used it in Aj.

A1,2 A1,3 A1,4

A2,2 A2,3 A2,4

A3,2 A3,3 A3,4

A4,2 A4,3 A4,4

A1,1

A2,1

A3,1

A4,1

Distribution P

A1,2 A1,3 A1,4

A2,2 A2,3 A2,4

A3,2 A3,3 A3,4

A4,2 A4,3 A4,4

A1,1

A2,1

A3,1

A4,1

Distribution Q

C1

Structured Mean Field

C2

Another example, we want to compute a,b:
Now we choose C1 = {A B}    C2 = {C D}
Aj = { {A B} {A D} {B C}}
Bj = Empty, since C1 and C2 do not overlap.

A

C

DB

Distribution P Distribution Q

C1

Structured Mean Field

C2

A

C

DB
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Exploiting Substructures
• Updates are relatively costly due to the consideration of 

structure.

Two approaches for updates:
• Sequential: Choose a factor and update it, then perform 

inference. It will converge.
• Parallel: Update all factors, then inference. It doesn’t 

guarantee convergence.

Structured Mean Field

Example:

Structure (b) can be exploited:

),(),(1),,,( 21 DCBA
Z

DCBAQ
Q

ψψ=

)('')(')('')('),(),(1),,,(' 2211 DCBADCBA
Z

DCBAQ CDAB
Q

ψψψψφφ=

Structure (c) cannot be exploited (redundant)

Structured Mean Field
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Refinement Theorem:
• Refines an initial approximating network by factorizing its 

factors into a product of factors and potentials from PF.

• ψk can be written as the product of two sets of factors:
• Those in PF that are subsets of the scope of ψk.
• Partially “covered” factors in PF by the scope of ψj and 

other factors in Q.

Structured Mean Field

General Mixture Weights
• Idea:

Instead of selecting one particular MF solution, we 
form a weighted average (a mixture) of several solutions.

• Enumerate the different MF-solutions by a hidden 
variable a, Q(X|a).

• Assign mixture weights Q(a).

∑=
a

aQaQQ )()|X()X(

Weigthed Mean Field
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under the constraint ∑ =
a

aQ 1)(

Determine Q(a) such that D(Q||P) is minimized:
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Weigthed Mean Field

General Mixture Weights

• The previous formula means that different solutions 
Q(X|a) contribute to the global distribution Q(X)
according to their distance to P(X).

• Note however, we are not optimizing Q(X|a)
simultaneously.

Weigthed Mean Field
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Example: Noisy-OR

Weigthed Mean Field

Variational Methods
Idea:

• Introducing auxiliary variational parameters that help in 
simplifying a complex objective function.

ln(x) ≤ λx - ln(λ) - 1

This upper bound allows 
to approximate ln(x) with 
a term that is linear in x.
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Thank you!

Mean Field Approximation
Example from Wiegerinck:

Noisy-OR from Haft et al.:


