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• Why?
• Belief propagation (BP)
• Factor graphs
• Region-based free energy approximations
• Bethe method
• Bethe method and BP
• Region graphs
• Generalized belief propagation (GBP)
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BP on Cluster Trees

• Belief propagation on
cluster trees is an exact
method for computing
posterior marginals

• Space complexity is exponential in the treewidth of the graph
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BP on Cluster Graphs

• Belief propagation on
cluster graphs is an
approximate methods
for computing posterior marginals

• Convergence is not guaranteed!
• Space complexity is linear in the size of the largest cluster
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Factor Graphs

• A factor graph is a bipartite graph
that represents factored structure
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Factor Graphs

• A factor graph is a bipartite graph
that represents factored structure
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BP on Factor Graphs

• Messages:

• Marginals:

C

D I

G

L
S

JH

( ) ( )
( )
∏
∈

→→ =
aiNc

iiciai xmxn
\

C D IG LS J H

a b c d e

( ) ( )
( )

∏
∈

→∝
iNa

iiai xmxb

( ) ( ) ( )
( )

∑ ∏
∈

→→ =
ia x iaNj

jajaaiia xnfxm
\ \x

x

CS 3710 Probabilistic graphical models

BP on Factor Graphs

• Messages:

• Marginals:

C

D I

G

L
S

JH

C D IG LS J H

a b c d e

( ) ( )
( )
∏
∈

→→ =
aiNc

iiciai xmxn
\

( ) ( )
( )

∏
∈

→∝
iNa

iiai xmxb

( ) ( ) ( )
( )

∑ ∏
∈

→→ =
ia x iaNj

jajaaiia xnfxm
\ \x

x

P(xh)?



5

CS 3710 Probabilistic graphical models

BP on Factor Graphs

• Messages:

• Marginals:

C

D I

G

L
S

JH

C D IG LS J H

a b c d e

( ) ( )
( )
∏
∈

→→ =
aiNc

iiciai xmxn
\

( ) ( )
( )

∏
∈

→∝
iNa

iiai xmxb

( ) ( ) ( )
( )

∑ ∏
∈

→→ =
ia x iaNj

jajaaiia xnfxm
\ \x

x

P(xh)?

CS 3710 Probabilistic graphical models

BP on Factor Graphs

• Messages:

• Marginals:

C

D I

G

L
S

JH

C D IG LS J H

a b c d e

( ) ( )
( )
∏
∈

→→ =
aiNc

iiciai xmxn
\

( ) ( )
( )

∏
∈

→∝
iNa

iiai xmxb

( ) ( ) ( )
( )

∑ ∏
∈

→→ =
ia x iaNj

jajaaiia xnfxm
\ \x

x

P(xh)?



6

CS 3710 Probabilistic graphical models

BP on Factor Graphs

• Messages:

• Marginals:

C

D I

G

L
S

JH

C D IG LS J H

a b c d e

P(xh)?

( ) ( )
( )
∏
∈

→→ =
aiNc

iiciai xmxn
\

( ) ( )
( )

∏
∈

→∝
iNa

iiai xmxb

( ) ( ) ( )
( )

∑ ∏
∈

→→ =
ia x iaNj

jajaaiia xnfxm
\ \x

x

CS 3710 Probabilistic graphical models

Free Energy

• Factored joint:

• Energy equations:
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Region-Based Free Energy

• A region R of a factor graph is given by a variable set VR and 
a factor set AR such that if a factor node belongs to AR, all its 
variable nodes are in VR

• The formalism can express
both Kikuchi and Bethe
approximations

1 2 43

A B C

Valid regionInvalid region

1 2 43

A B C

CS 3710 Probabilistic graphical models

Region-Based Free Energy

• Region average energy and entropy:

• Region-based average energy and approximate entropy:

where cR is a counting number of the region R
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Region-Based Free Energy

• A region-based approximation is valid if for every factor node 
a and every variable node i:

• If bR(xR) = pR(xR), then the average
energy Uℜ of a valid region-based
approximation is exact

• If p(x) is uniform and bR(xR) = pR(xR),
the entropy Hℜ of a valid region-based
approximation is exact
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Constrained Region-Based Free Energy

• A region-based approximation is constrained if:
– Every bR(xR) has the form of a probability function
– Marginals are consistent across regions

• A constrained region-based approximation
is maxent-normal if it is valid
and the entropy Hℜ achieves its
maximum when all bR(xR) are uniform

• Despite these restrictions we may get strange looking results!

Minimization of Fℜ
can be achieved by 

maximizing Hℜ
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Bethe Method

• Bethe approximation is a special case of region-based free 
energy approximation

• Bethe free energy equals to FBethe = UBethe – HBethe:

• If the factor graph has no cycles,
UBethe and HBethe are exact

• Bethe approximations are
maxent-normal
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• The problem of finding FBethe can be stated as:

• To solve this constrained optimization problem, we introduce 
Lagrangian multipliers, and turn it into unconstrained one

• The first derivatives with respect to beliefs yield stationary 
points, which are fixed points of the BP algorithm

Bethe Method and BP
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Region Graphs

• Region graph is a graphical formalism for generating region-
based free energy approximations
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Region Graphs

• Region graph is a graphical formalism for generating region-
based free energy approximations

• Regions Rb and Re can be connected by an edge Rb → Re only 
if Re ⊆ Rb
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Region Graphs

• Region graph is a graphical formalism for generating region-
based free energy approximations

• The counting number equals to one minus the in-degree
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Region Graphs

• Region graph is a graphical formalism for generating region-
based free energy approximations

• The graph has to satisfy the region graph condition
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Generalized Belief Propagation

• A class of message-passing algorithms
• Parent-to-child algorithm

– Generalizes the BP algorithm on region graphs

– Correctness can be proved similarly to the BP algorithm
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