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A Differential Approach to 
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Outline

Introduction
Overview of algorithms for inference in Bayesian networks 
(BN)
Proposed new approach

How to represent BN as multi-variate polynomial?
How to answer queries?
How to represent polynomial using arithmetic 
circuits?
How to generate arithmetic circuits?
Conclusions
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Background

Bayesian network
Directed acyclic graph (DAG)
Conditional probability tables (CPT)

Review of three classes of inference 
algorithms

Conditioning
Variable elimination
Tree clustering

A BN with n nodes and tree 
width w

O (n exp(w)) in time and space

4

Introduction

A new approach to inference in BN
The probability distribution of a BN is represented 
as a polynomial
Probabilistic queries are answered by evaluating 
and differentiating the polynomial
Polynomial is represented as an arithmetic circuit, 
which can be evaluated and differentiated in time 
and space linear in its size.

A BN with n nodes and tree 
width w, a circuit can be built in

O (n exp(w)) in time and space
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Network Polynomial

Let X be a variable; U be its parents in a BN

Evidence indicators 
Network parameters

Represent the conditional probability 

By the Chain Rule,
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Network Polynomial
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Polynomial of Network N
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Derivatives wrt. Evidence Indicators
? compute  toHow
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Derivatives wrt. Evidence Indicators

For every variable X and evidence e in a Bayesian 
network,

Where, e – X denotes the subset of instantiation e
pertaining to variables not appearing in X.
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Derivatives wrt. Evidence Indicators
(posterior marginals)

For every variable X and evidence e, :E∉X
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Derivatives wrt. Evidence Indicators
(posterior marginals)

For every variable X and evidence e: 
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Derivatives wrt. Network Parameters
and Second Partial Derivatives
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How to Represent Polynomial Using an 
Arithmetic Circuit?

An arithmetic circuit over variables       is a 
rooted, directed acyclic graph.

Leaf nodes: numeric constants or variables in 
Other nodes: multiplication and addition operations

Size: # of edges

∑
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How to Differentiate the Circuit?

Two registers
Initialization: dr(v) is initialized to zero except for root v
where dr(v) = 1
Upward-pass: At node v, compute the value of v and 
store it in vr(v)
Downward-pass: At node v and for each parent p, 
increment dr(v) by

dr(p) if p is an addition node;
if p is a multiplication node, where v’are the 

other children of p.
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The Complexity of Differentiating Circuits

Upward-pass:
Time: linear in the circuit size

Downward-pass
Time is linear only when each multiplication node has 
a bounded number of children
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How to Generate Arithmetic Circuit?

Goal: generate the smallest circuit possible; 
Offer guarantees on the complexity of circuits
Two classes of methods:

Exploit the global structure of a BN 
Exploit the local structure (the specific values of 
conditional probabilities)

20

Circuits that Exploit Global Structure

Each jointree embeds an arithmetic circuit 
that computes the network polynomial.
Assuming we have a jointree for the given 
network, refer to Definition 5 for generating 
circuits based on jointrees.
If a network has n nodes and treewidth w, 
then the circuit complexity is O(n exp(w))
If the jointree has a cluster of large size, say 40, 
then the embedded arithmetic circuit will be 
intractable.
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Circuits that Exploit Local Structure

If the conditional probabilities of the BN exhibit 
some local structure:

whether some probabilities = 0 or 1 (logical constraint)
whether some probabilities in the same table are equal 
(context-specific independence).
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Circuits that Exploit Local Structure 
(reducing the problem to logical reasoning)

Three conceptual steps:
Encoding a multi-linear function using a propositional 
theory
Factoring the propositional encoding (logical form d-
DNNF, refer to [Darwiche 2002b])
Extracting an arithmetic circuit

Logical constraints 
lead to a significant 
reductions in the 
size of circuits
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Conclusions

A new approach for inference in Bayesian 
networks which is based on evaluating and 
differentiating arithmetic circuits
Subsumes the jointree approach
The complexity of inference is sensitive to 
both the global and local structure of  
Bayesian networks


