A Differential Approach to Inference in Bayesian Networks

Presented by Yanna Shen
shenyn@cbmi.pitt.edu

Outline

- Introduction
- Overview of algorithms for inference in Bayesian networks (BN)
- Proposed new approach
- How to represent BN as multi-variate polynomial?
- How to answer queries?
- How to represent polynomial using arithmetic circuits?
- How to generate arithmetic circuits?
- Conclusions

Background

- Bayesian network
- Directed acyclic graph (DAG)
- Conditional probability tables (CPT)

Review of three classes of inference algorithms
\square Conditioning A BN with n nodes and tree

- Variable elimination
- Tree clustering width w
$\int O(n \exp (w))$ in time and space

Introduction

- A new approach to inference in BN
- The probability distribution of a BN is represented as a polynomial
- Probabilistic queries are answered by evaluating and differentiating the polynomial
- Polynomial is represented as an arithmetic circuit, which can be evaluated and differentiated in time and space linear in its size

A BN with n nodes and tree
width w, a circuit can be built in
$O(n \exp (w))$ in time and space

Network Polynomial

Let X be a variable; \mathbf{U} be its parents in a BN

- Evidence indicators $\quad \lambda_{x} \quad \lambda_{x}=\left\{\begin{array}{lr}1 & \text { if } x \sim \mathbf{e} \text { (evidence) } \\ 0 & \text { otherwise }\end{array}\right.$
- Network parameters $\theta_{x \mid \mathrm{u}}$
- Represent the conditional probability $P_{r}(x \mid \mathbf{u})$

By the Chain Rule,

$$
P_{r}(\mathbf{x})=\prod_{\mathbf{u u} \sim \mathbf{x}} \theta_{x \mid \mathbf{u}}
$$

\qquad

Network Polynomial

A	θ_{A}
true	0.5
false	0.5

A	B	$\theta_{B \mid A}$
true	true	1
true	false	0
false	true	0
	false	false

A	C	$\theta_{C \mid A}$
true	true	0.8
true	false	0.2
false true	0.2	
false false	0.8	

$$
\begin{aligned}
& P_{(x)}=\prod^{\theta} \sigma_{\text {. }} \\
& P_{r}(a \bar{b} \bar{c})=\theta_{a} \theta_{\bar{b} \mid a} \theta_{\bar{c} \mid a}=0.5 \times 0 \times 0.2=0
\end{aligned}
$$

Polynomial of Network N
$f=\sum_{x} \prod_{m} \lambda_{i}, \theta_{\text {in }}$
$f=\lambda_{a} \lambda_{b} \lambda_{c} \theta_{a} \theta_{b \mid a} \theta_{c \mid a}+$
$\lambda_{a} \lambda_{b} \lambda_{c} \theta_{a} \theta_{b \mid a} \theta_{\overline{c \mid a}}+$
$\lambda_{a} \lambda_{\bar{b}} \lambda_{c} \theta_{a} \theta_{\bar{b} \mid a} \theta_{c \mid a}+$
$\lambda_{a} \lambda_{\bar{b}} \lambda_{c} \theta_{a} \theta_{\bar{b} \mid a} \theta_{\bar{c} \mid a}+$
...
$\lambda_{\bar{a}} \lambda_{\bar{b}} \lambda_{\bar{c}} \theta_{\bar{a}} \theta_{\bar{b} \mid \bar{a}} \theta_{\bar{c} \mid \bar{a}}$
$f(\mathbf{e})=\operatorname{Pr}(\mathbf{e})$

A	θ_{A}
true	0.5
false	0.5

A BN with n binary nodes 2^{n} terms (instantiations)

	raise	rue
false	false	1

$$
\text { Evidence } \quad \mathbf{e}=a \bar{c}
$$

$$
\text { Replace } \quad \lambda_{a}=1, \lambda_{a}=0, \lambda_{b}=1, \lambda_{\bar{b}}=1, \lambda_{c}=0, \lambda_{c}=1
$$

a

$$
\operatorname{Pr}(a \bar{c})=f(\bar{a} \bar{c})=\theta_{a} \theta_{b \mid a} \theta_{c \mid a}+\theta_{a} \theta_{\bar{b} \mid a} \theta_{c \mid a}=0.1
$$

Derivatives writ. Evidence Indicators

$f=\lambda_{a} \lambda_{b} \lambda_{c} \theta_{a} \theta_{b \mid a} \theta_{c \mid a}+$
$\lambda_{a} \lambda_{b} \lambda_{c} \theta_{a} \theta_{b \mid a} \theta_{\bar{c} \mid a}+$
$\lambda_{a} \lambda_{\bar{b}} \lambda_{c} \theta_{a} \theta_{\bar{b} \mid a} \theta_{c \mid a}+$
How to compute $\frac{\partial f}{\partial \lambda_{a}}$?
Conditioning f on event a
Set indicator $\lambda_{a}=1, \lambda_{a}=0$
$\lambda_{a} \lambda_{\bar{b}} \lambda_{\bar{c}} \theta_{a} \theta_{\bar{b} \mid a} \theta_{\bar{c} \mid a}+$
$\frac{\partial f}{\partial \lambda_{a}}=\lambda_{b} \lambda_{c} \theta_{a} \theta_{b \mid a} \theta_{c \mid a}+\lambda_{b} \lambda_{c} \theta_{a} \theta_{b \mid a} \theta_{\overline{c \mid a}}+$
$\lambda_{a} \lambda_{\bar{b}} \lambda_{c} \theta_{\bar{a}} \theta_{\bar{b} \bar{a}} \theta_{\bar{c} \bar{a}}$
$\lambda_{\bar{b}} \lambda_{c} \theta_{a} \theta_{\bar{b} \mid a} \theta_{c \mid a}+\lambda_{\bar{b}} \lambda_{c} \theta_{a} \theta_{\bar{b} \mid a} \theta_{\bar{c} \mid a}$

Partial derivatives of the network polynomial f at evidence $a \bar{c}$

Derivatives wrt. Evidence Indicators

- For every variable X and evidence \mathbf{e} in a Bayesian network,

$$
\frac{\partial f}{\partial \lambda_{x}}(\mathbf{e})=\operatorname{Pr}(x, \mathbf{e}-X)
$$

Where, $\mathbf{e}-X$ denotes the subset of instantiation \mathbf{e} pertaining to variables not appearing in X.

$$
\begin{aligned}
& \text { Evidence } \mathbf{e}=a \bar{c} \\
& \frac{\partial f}{\partial \lambda_{b}}(a \bar{c})=\operatorname{Pr}(b, a \bar{c}-B)=\operatorname{Pr}(a \bar{c})
\end{aligned}
$$

Derivatives wrt. Evidence Indicators

 (posterior marginals)- For every variable X and evidence $\mathbf{e}, X \notin \mathbf{E}$:

$$
\operatorname{Pr}(x \mid \mathbf{e})=\frac{1}{f(\mathbf{e})} \frac{\partial f}{\partial \lambda_{x}}(\mathbf{e})
$$

$$
\text { Evidence } \mathbf{e}=a \bar{c}
$$

$$
\begin{aligned}
& \operatorname{Pr}(b \mid \mathbf{e})=\frac{1}{f(\mathbf{e})} \frac{\partial f}{\partial \lambda_{b}}(\mathbf{e})=\frac{1}{0.1} \times 0.1=1 \\
& \operatorname{Pr}(\bar{b} \mid \mathbf{e})=\frac{1}{f(\mathbf{e})} \frac{\partial f}{\partial \lambda_{\bar{b}}}(\mathbf{e})=\frac{1}{0.1} \times 0=0
\end{aligned}
$$

v	λ_{a}	$\lambda_{\bar{a}}$	λ_{b}	$\lambda_{\bar{b}}$	λ_{c}	$\lambda_{\bar{c}}$	θ_{a}	$\theta_{\bar{a}}$	$\theta_{b l a}$	$\theta_{b \bar{a}}$	$\theta_{\bar{b} a}$	$\theta_{\bar{b} \bar{a}}$	$\theta_{c \mid a}$	$\theta_{c \bar{a}}$	$\theta_{\bar{c} \mid a}$	$\theta_{\bar{c} \bar{a}}$
$\partial f / \partial v$	$\mathbf{0 . 1}$	0.4	0.1	$\mathbf{0}$	0.4	0.1	0.2	0	0.1	0	0.1	0	0	0	0.5	0

Partial derivatives of the network polynomial f at evidence $a c, f(a \bar{c})=0.1$

Derivatives wrt. Evidence Indicators

 (posterior marginals)- For every variable X and evidence e:

$$
\begin{aligned}
& \operatorname{Pr}(\mathbf{e}-X)=\sum_{x} \frac{\partial f}{\partial \lambda_{x}}(\mathbf{e}) \\
& \operatorname{Pr}\left(x^{\prime} \mid \mathbf{e}-X\right)=\frac{\frac{\partial f}{\partial \lambda_{x}}(\mathbf{e})}{\sum_{x} \frac{\partial f}{\partial \lambda_{x}}(\mathbf{e})}
\end{aligned}
$$

Evidence $\mathbf{e}=a \bar{c}$

$$
\operatorname{Pr}(\mathbf{e}-A)=\operatorname{Pr}(\bar{c})=\frac{\partial f}{\partial \lambda_{a}}(\mathbf{e})+\frac{\partial f}{\partial \lambda_{a}}(\mathbf{e})=0.1+0.4=0.5
$$

Derivatives wrt. Network Parameters and Second Partial Derivatives

For every family $X \mathbf{U}$, and evidence e,
$\theta_{x \mid \mathbf{u}} \frac{\partial f}{\partial \theta_{x \mid \mathbf{u}}}(\mathbf{e})=\operatorname{Pr}(x, \mathbf{u}, \mathbf{e})$
For every pair of variables X, Y, and evidence \mathbf{e}, when $X \neq Y$,
$\frac{\partial^{2} f}{\partial \lambda_{x} \partial \lambda_{y}}(\mathbf{e})=\operatorname{Pr}(x, y, \mathbf{e}-X Y)$
For every family $X \mathbf{U}$, variable Y, and evidence e,
$\theta_{x \mid \mathbf{u}} \frac{\partial^{2} f}{\partial \theta_{x \mid \mathbf{u}} \partial \lambda_{y}}(\mathbf{e})=\operatorname{Pr}(x, \mathbf{u}, y, \mathbf{e}-Y)$
For every pair of families $X \mathbf{U}, Y \mathbf{V}$, and evidence \mathbf{e}, when $x \mathbf{u} \neq y \mathbf{v}$,

$$
\begin{equation*}
\theta_{x \mid \mathbf{u}} \theta_{y \mid \mathbf{v}} \frac{\partial^{2} f}{\partial \theta_{x \mid \mathbf{u}} \partial \theta_{y \mid \mathbf{v}}}(\mathbf{e})=\operatorname{Pr}(x, \mathbf{u}, y, \mathbf{v}, \mathbf{e}) \tag{4}
\end{equation*}
$$

How to Represent Polynomial Using an

Arithmetic Circuit?

- An arithmetic circuit over variables \sum is a rooted, directed acyclic graph.
- Leaf nodes: numeric constants or variables in \sum
- Other nodes: multiplication and addition operations
- Size: \# of edges

An Arithmetic Circuit Example

How to Differentiate the Circuit?

If v is not the root node, and has parent p, by chain rule,

where $d r(v)=1 \quad \bullet p$ is a multiplication node, then $\frac{\partial p}{\partial \mathrm{v}}=\frac{\partial\left(v \prod_{v} v^{\prime}\right)}{\partial v}=\prod_{v^{\prime}} v$

- Upward-pass: At nc store it in $v r(v) \quad \bullet p$ is an addition node, then $\frac{\partial p}{\partial \mathrm{v}}=\frac{\partial\left(v+\sum_{v} v^{\prime}\right)}{\partial v}=1$
- Downward-pass: At node v and for each parent p, increment $d r(v)$ by
- $d r(p)$ if p is an addition node;
- $\operatorname{dr}(p) \prod_{v} v r\left(v^{\prime}\right)$ if p is a multiplication node, where v 'are the other children of p.
\qquad

The Complexity of Differentiating Circuits

- Upward-pass:
- Time: linear in the circuit size
- Downward-pass
- Time is linear only when each multiplication node has a bounded number of children
$\prod_{v^{\prime}} v r\left(v^{\prime}\right)=\frac{v r(p)}{v r(v)}$ when $v r(v) \neq 0$

$$
\begin{aligned}
& \text { Time: } \\
& \text { \# of } v-1 \rightarrow 1
\end{aligned}
$$

If $v r(v)=0$,
need two additional bits per multipication node to
guarantee the method takes time which is linear in the circuit size

How to Generate Arithmetic Circuit?

- Goal: generate the smallest circuit possible; Offer guarantees on the complexity of circuits
- Two classes of methods:
- Exploit the global structure of a BN
- Exploit the local structure (the specific values of conditional probabilities)

Circuits that Exploit Global Structure

- Each jointree embeds an arithmetic circuit that computes the network polynomial.
- Assuming we have a jointree for the given network, refer to Definition 5 for generating circuits based on jointrees.
- If a network has n nodes and treewidth w, then the circuit complexity is $O(n \exp (w))$

If the jointree has a cluster of large size, say 40 , then the embedded arithmetic circuit will be intractable

Circuits that Exploit Local Structure

- If the conditional probabilities of the BN exhibit some local structure:
- whether some probabilities $=0$ or 1 (logical constraint)
whether some probabilities in the same A re equal
(context-specific indenendence).

Exploit global structure

 false alse

Conclusions

- A new approach for inference in Bayesian networks which is based on evaluating and differentiating arithmetic circuits
- Subsumes the jointree approach
- The complexity of inference is sensitive to both the global and local structure of Bayesian networks

