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| Background

= Bayesian network
o Directed acyclic graph (DAG)
o Conditional probability tables (CPT)

= Review of three classes of inference
algorithms

a Conditioning
o Variable elimination
o Tree clustering

‘ Introduction

= A new approach to inference in BN

o The probability distribution of a BN is represented
as a polynomial

o Probabilistic queries are answered by evaluating
and differentiating the polynomial

o Polynomial is represented as an arithmetic circuit,
which can be evaluated and differentiated in time
and spage linear in its ‘-




Network Polynomial

Let X be a variable; U be its parents in a BN

u Evidence indicators A _ A1 =

X

1 if x ~ e (evidence)
0 otherwise

» Network parameters Hx‘u

a Represent the conditional probability P.(x | u)

By the Chain Rule,
1)r (X) = H gxlu

xu~Xx

‘ Network Polynomial o
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' Polynomial of Network N
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‘ Derivatives wrt. Evidence Indicators
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Derivatives wrt. Evidence Indicators

For every variable X and evidence e in a Bayesian
network, g (e) _ Pr(x,e— X)

X

Where, e — X denotes the subset of instantiation e
pertaining to variables not appearing in X.

Evidence ¢ = aE

%(az):M(b, aE—B):Pr(ab;:)

Derivatives wrt. Evidence Indicators
(posterior marginals)

For every variable X and evidence e, X ¢E:
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Derivatives wrt. Evidence Indicators
(posterior marginals)

For every variable X and evidence e:

Pr(e—X):leg(e)
o
(e
Pr(x' |e—X):L

> ()

— oA,

Evidence e = ac

Pr(e— 4) = Pr(c)= %(epg(e) ~0.1404=0.5
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Derivatives wrt. Network Parameters
and Second Partial Derivatives

For every family XU, and evidencee,

o
0. ——I(e)=Pr(x,u,e 1
Xu aexm ( ) ( ) ( )
For every pair of variables X, Y, and evidence e, when X # 7,
o*f
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For every pair of families XU, YV, and evidence e, when xu # yv,
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How to Represent Polynomial Using an
Arithmetic Circuit?

An arithmetic circuit over variables ) is a
rooted, directed acyclic graph.

o Leaf nodes: numeric constants or variables in Z
o Other nodes: multiplication and addition operations

Size: # of edges
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How to Differentiate the Circuit?
If vis not the root node, and has parent p, by chain rule,
¥ I
Two registers [w( @ 7%

Initialization: d ( ) illfv'areotherchildrenofparentp.
] Larlv) iR

v 1.v .
where dr(v) =1 “e pisa multiplication node, then% = (VI;[" ! )= H v
y v
o Upward-pass: At n¢ o e e a(v+2v’) 1
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store it in W’(V) pis an addition node, then o re

o Downward-pass: At node v and for each parent p,
increment dr(v) by

dr(p) if p is an addition node;

ar(p)] [, v if p is a multiplication node, where v are the
other children of p.
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Downward-pass Evidence ac
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The Complexity of Differentiating Circuits

Upward-pass:
o Time: linear in the circuit size
Downward-pass

o Time is linear only when each multiplication node has
a bounded number of children

HV‘ vr(v' ) = vrip) when vr(v) # 0 e
) #of Vo1 — 1
If vr(v) =0,

need two additional bits per multipication node to

guarantee the method takes time which is linear in the circuit size

18




‘ How to Generate Arithmetic Circuit?

= Goal: generate the smallest circuit possible;
Offer guarantees on the complexity of circuits

= Two classes of methods:

o Exploit the global structure of a BN

o Exploit the local structure (the specific values of
conditional probabilities)
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‘ Circuits that Exploit Global Structure

= Each jointree embeds an arithmetic circuit
that computes the network polynomial.

= Assuming we have a jointree for the given
network, refer to Definition 5 for generating
circuits based on jointrees.

= If a network has » nodes and treewidth w,
then the circuit complexity is O(n exp(w))
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Circuits that Exploit Local Structure

If the conditional probabilities of the BN exhibit
some local structure:

ao whether some probabilities = 0 or 1 ( )
o whether some probabilities in the same re equal
( ).
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Circuits that Exploit Local Structure
(reducing the problem to logical reasoning)

Three conceptual steps:
o Encoding a multi-linear function using a propositional

theory

o Factoring the propositional encoding (logical form d-
DNNF, refer to [Darwiche 2002b])

o Extracting an arithmetic circuit

Net Vars# | d-DNNF-based | Jointree—based
*/+mnodes */+nodes

Poker 7 302 635

Golf 8 143 676

Boblo 22 393 494

Gnt 58 1377 12378

6hy 58 1814 20176

3nt 58 6328 35902

Logical constraints
lead to a significant
reductions in the
size of circuits
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Conclusions

A new approach for inference in Bayesian
networks which is based on evaluating and
differentiating arithmetic circuits

Subsumes the jointree approach

The complexity of inference is sensitive to
both the global and local structure of
Bayesian networks
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