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Recursive 
Decomposition

Richard Pelikan
October 10, 2005

Inference in Bayesian Networks
You have a Bayesian network.

Let                                be a set of n discrete variables
What do you do with it?

Queries
As we already know, the joint is modeled by
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Conditioning
When we want to explain a complex event in 
terms of simpler events, we “condition”.

Let                  , a set of instantiated variables. 
Let                  be the remaining variables in Z. Then,

Computing the probability of an event E
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What is wrong?
Solving the previous equation takes time 
which is exponential in X

We see this before we learn to “push in” 
summations.

Just to store a Bayesian network takes 
room, depending on the connectivity of the 
network

More parents means more table entries in the 
CPTs.

Bottom line: We have problems with time 
and space complexity.
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Example
You have two emotional states (H). 
You have a pet rabbit (R). 

Happy: your pet rabbit is alive. 

Sad:     your pet rabbit is dead.

R H

Example
Your new neighbor is a crocodile farmer. If he 
farms (F), there is a risk of crocodile attack (C). 

R HF C
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Example
Your new neighbor is a crocodile farmer. If he 
farms (F), there is a risk of crocodile attack (C). 

The crocodile can eat your rabbit. You think you 
are scared of crocodile attacks.

R HF C

Example

More parents = more space.
If we want to compute P(H), the 
computer does this:
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Network Conditioning
We can make things simpler if we 
condition the network on C=c (being true).
Cutset conditioning works to disconnect 
mulitply-connected networks

Resulting singly-connected graph can be  
solved efficiently using poly-tree algorithms

Network Conditioning

Assume C = c
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Network Conditioning

Assume C = c
We can save on space immediately –
only half of the CPT for H is needed.
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Network Conditioning

Assume C = c
We can save on space immediately–
only half of the CPT for H is needed.
The network is now singly connected. 
(Linear time and space complexity)
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Network Conditioning
We can make things simpler if we condition the 
network on           (being true).
The result is a new, simpler network which 
allows any computation involving         . Just as 
easily, another network can be created for            
and then we compute P(H) as the sum over 
conditions:
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Network Decomposition
Instead of worrying about single 
connectivity, it is easier to completely 
disconnect a graph into two subgraphs.
Similar to tree-decomposition – which 
decomposition to pick?

We can use the BBN structure to decide
Any decomposition works, but some are more 
efficient than others.



8

D-trees

D-Tree: full binary tree where leaves are network 
CPTs
We should decompose the original network by 
instantiating variables shared by left and right 
branches
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Decomposition

Smaller , less-connected networks 
are along the nodes of the d-tree
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Decomposition
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The structure of the d-tree also shows how 
the computation can be factored
Conditioning imposes independence 
between the variables in the factored 
portions of the graph
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Factoring

All inference tasks are sums of products 
of conditional probabilities
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Factoring

All inference tasks are sums of products 
of conditional probabilities

F C HR
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Factoring

At each step, you choose a new “cutset” 
and work with the subsequent networks
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Recursive Conditioning Algorithm

Cutsets

Conditioning on cutsets allow us to decompose 
the graph. 

The union of all cutsets associated 
with T’s ancestor nodes
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Some intuition
A cutset tells us what we are conditioning 
on
An A-cutset represents all of the variables 
being instantiated at that point on the d-
tree.

We produce a solution for a subtree for every 
possible instantiation of the variables in the 
subtree’s A-cutset.
There can be redundant computation
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Contexts
Several variables in the 
acutset may never be 
used in the subtree. 



14

23

12

45

34

67

56

1

78

1

12

123

1234

12345

123456

A-Cutsets

Contexts
Several variables in the 
acutset may never be 
used in the subtree. 
We can instead 
remember the “context” 
under which any pair of 
computations yields the 
same result. 
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Improved Recursive Conditioning Algorithm
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Relation to Junction-Trees

Sepsets are equivalent to contexts 
Messages passed between links correspond to 
contextual information being passed upward in 
the d-tree
Passed messages sum out information about a 
residual (eliminated) set of variables – this is 
equivalent to the cutset.
A d-tree can be built from a tree decomposition

Summary
RC operates in O(n exp(w)) time if you 
cache every context. This is better than 
being exponential in n. 
Caching can be selective, allowing the 
algorithm to run with limited memory
Eliminates redundant computation
Intuitively solves a complex event in terms 
of smaller events.


