Recursive
Decomposition

Richard Pelikan
October 10, 2005

o
Inference in Bayesian Networks

m You have a Bayesian network.

Let Z={X,,X,,..X,} be a setof ndiscrete variables
m What do you do with it?

Queries

As we already know, the joint is modeled by

P(X, X,,....X,) :HP(Xi | parents(X,))
i=1

"
Conditioning

m WWhen we want to explain a complex event in
terms of simpler events, we “condition”.
Let E < Z ,asetofinstantiated variables.
Let Y be the remaining variables in Z. Then,

m Computing the probability of an event E
P(E)=) P(X,E)
X

P(E) = Z ll[P(Xl. | parents(X,))

g
What is wrong?

m Solving the previous equation takes time

which is exponential in X
We see this before we learn to “push in”
summations.

m Just to store a Bayesian network takes
room, depending on the connectivity of the
network

More parents means more table entries in the
CPTs.

m Bottom line: We have problems with time

and space complexity.

"
Example

m You have two emotional states (H).
m You have a pet rabbit (R).

-

] e Happy: your pet rabbit is alive.

] @) Sad: your pet rabbit is dead.

F—
Example

m Your new neighbor is a crocodile farmer. If he
farms (F), there is a risk of crocodile attack (C).

g
Example

m Your new neighbor is a crocodile farmer. If he
farms (F), there is a risk of crocodile attack (C).

m The crocodile can eat your rabbit. You think you
are scared of crocodile attacks.

B
g
o
~
o
w

F |0.1]09 - [E0
Ra 0.9 |01
m More parents = more space. = Ton i0s
m If we want to compute P(H), the =T T3

computer does this:

P(H)=) > > P(F)P(C|F)P(R|C)P(H|R,C)

F—
Network Conditioning

m \We can make things simpler if we
condition the network on C=c (being true).

m Cutset conditioning works to disconnect
mulitply-connected networks

Resulting singly-connected graph can be
solved efficiently using poly-tree algorithms

" S
Network Conditioning

@ {c (R)
4 Ny SR
o 1 ¢ | C A hith
0.9 0.1
f_ 0.8/0.2 @10 o lo7 03
f lo.1]09 Vool G
c 09 (0.1
m Assume C =c
o[04 X0
e e

Network Conditioning

F (R) H
@ &)
Lo LRl (A
09 |01 i Do O
i ¢ |1 o

m Assume C =c¢

m \We can save on space immediately —
only half of the CPT for H is needed.

Network Conditioning

) 4

- H

@
r
09 |01 f 08|02 c |0

7 |o1]09

O—F—®
£

_\\|

2l
o

m Assume C =c

m We can save on space immediately—
only half of the CPT for H is needed.

m The network is now singly connected.
(Linear time and space complexity)

Network Conditioning

m We can make things simpler if we condition the
network on C = c (being true).

m The result is a new, simpler network which
allows any computation involving C =c. Just as
easily, another network can be created for C=c¢
and then we compute P(H) as the sum over
conditions:

P(H) = Z{ZZP(F)P(C | F)P(R|C)P(H | R)}

g
Network Decomposition

m Instead of worrying about single
connectivity, it is easier to completely
disconnect a graph into two subgraphs.

m Similar to tree-decomposition — which
decomposition to pick?
We can use the BBN structure to decide

Any decomposition works, but some are more
efficient than others.

D-trees
C
F R
= = A
0{ OJ: - c c 2 ! 4 }7
& f 0:8 .]-0.2 E ; - e o7 |03
]7* 0.1 0.9 rc 09 | 0.1

7e |01 |09

m D-Tree: full binary tree where leaves are network
CPTs

rc

m We should decompose the original network by
instantiating variables shared by left and right
branches

" I
Decomposition

O&—C ®—®

m Smaller, less-connected networks
are along the nodes of the d-tree

" S
Decomposition

O—C ®—®

Z{ZZP(F)P(C | F)P(R|C)P(H | R)}

\
E—0©

" P(F)P(C|F) D P(R)P(H | R)

m The structure of the d-tree also shows how
the computation can be factored

m Conditioning imposes independence
between the variables in the factored
portions of the graph

" S
Factoring

H—C—®—®
P(H)=>>"> P(F)P(C|F)P(R|C)P(H |R,C)

=> [1P(X,| parents(X,))

FCRieFCR

m All inference tasks are sums of products
of conditional probabilities

" S
Factoring

E—0 ®—®

P(H)=) > P(F)P(C|F)P(R|C)P(H |R,C)

=> [1P(X,| parents(X,))

FCRieFCR

= Z{ZHP(XZ. |parents(X,.))}

FR ieFR

m All inference tasks are sums of products
of conditional probabilities

"
Factoring

® 0® ®

P(H) =D Y P(FYP(C | :F)P(RICYP(H | R,C)

A Z HP(Xi | parents(X,))

FCRieFCR

= Z[Z HP(Xi | parents(Xi))}

FR ieFR

= ZHZHP(XI' |parents(Xl.))}[ZHP(Xi |parents(Xl.))H

F ieF R ieR

m At each step, you choose a new “cutset”
and work with the subsequent networks

" S
Recursive Conditioning Algorithm

Algorithm rcl

rC1(T)
01. if T is a leaf node,
02. then return LOOKUP(T)
03. elsep+ 0

04. for each instantiation ¢ of uninstantiated variables in cutset(T") do
05. record instantiation ¢
06. p & p+RC1(THrRC1(TT)
07. un-record instantiation c
08. return p
LOOKUP(T')

01. ¢ « CPT of variable X associated with leaf T'
02. if X is instantiated,

03. then z + recorded instantiation of X

04. p + recorded instantiation of X’s parents
05. return ¢(z | p) // ¢(z | p) =Pr(z | p)
06. else return 1

Cutsets
(R
e O
C
F R
F CF CR RH

m Conditioning on cutsets allow us to decompose
the graph.
cutset(T) = vars(T,) vars(T},) — acutset(T)

m acutset(T) = The union of all cutsets associated
with T’s ancestor nodes

&
®

Cutsets

/ \,\1 23

/ \1234

12345

Ser A0
2 / \ 123456
56

67 78

Cutsets

A-Cutsets

" S
Some intuition

m A cutset tells us what we are conditioning
on

m An A-cutset represents all of the variables
being instantiated at that point on the d-
tree.

We produce a solution for a subtree for every

possible instantiation of the variables in the
subtree’s A-cutset.

There can be redundant computation

" I
Contexts ﬁj

m Several variables inthe ~ ? / 12
acutset may never be
used in the subtree.

A-Cutsets

Contexts ﬁJ

m Several variablesinthe 7 / \212
acutset may never be 12, P \aaem
7 {3
used in the subtree. 23 5 1234
m We can instead 34 BN
“« ” . 12345
remember the “context 44 5\
under which any pair of
computations yields the 2 / \
same result. 67 78
A-Cutsets
Contexts

context(T') = vars(T) () acutset(T)

" JEE
Improved Recursive Conditioning Algorithm

Algorithm rc2

rC2(T)
01. if T is a leaf node,
02. then return Lookup(T')
03. else y + recorded instantiation of context(T)

04. if cacheg[y] # nil, return cacher[y]

05. else pe 0

06. for each instantiation ¢ of uninstantiated variables in cutset(T") do
07. record instantiation e

08. p & p+ RC2(TYRC2(TT)

09. un-record instantiation ¢

10. cacher[y] + p

11. return p

= I
Relation to Junction-Trees

m Sepsets are equivalent to contexts

m Messages passed between links correspond to
contextual information being passed upward in
the d-tree

m Passed messages sum out information about a
residual (eliminated) set of variables — this is
equivalent to the cutset.

m A d-tree can be built from a tree decomposition

g
Summary

m RC operates in O(n exp(w)) time if you
cache every context. This is better than
being exponential in n.

m Caching can be selective, allowing the
algorithm to run with limited memory

m Eliminates redundant computation

m Intuitively solves a complex event in terms
of smaller events.

