
1

Recursive
Decomposition

Richard Pelikan
October 10, 2005

Inference in Bayesian Networks
You have a Bayesian network.

Let be a set of n discrete variables
What do you do with it?

Queries
As we already know, the joint is modeled by

))(|(),...,,(
1

21 ∏
=

=
n

i
iin XparentsXPXXXP

},...,,{ 21 nXXXZ =

2

Conditioning
When we want to explain a complex event in
terms of simpler events, we “condition”.

Let , a set of instantiated variables.
Let be the remaining variables in Z. Then,

Computing the probability of an event E

),()(EXPEP
X
∑=

))(|()(
1
∏∑
=

=
n

i
ii

X
XparentsXPEP

ZE ⊆
X

What is wrong?
Solving the previous equation takes time
which is exponential in X

We see this before we learn to “push in”
summations.

Just to store a Bayesian network takes
room, depending on the connectivity of the
network

More parents means more table entries in the
CPTs.

Bottom line: We have problems with time
and space complexity.

3

Example
You have two emotional states (H).
You have a pet rabbit (R).

Happy: your pet rabbit is alive.

Sad: your pet rabbit is dead.

R H

Example
Your new neighbor is a crocodile farmer. If he
farms (F), there is a risk of crocodile attack (C).

R HF C

4

Example
Your new neighbor is a crocodile farmer. If he
farms (F), there is a risk of crocodile attack (C).

The crocodile can eat your rabbit. You think you
are scared of crocodile attacks.

R HF C

Example

More parents = more space.
If we want to compute P(H), the
computer does this:

0.90.1

0.20.8

R HF C

0.10.9

01

10

0.90.1

10

0.10.9

0.30.7
F
F

C

C
C

F F C HHRR

C

CR

R

C

C

R

R

∑∑∑=
F C R

CRHPCRPFCPFPHP),|()|()|()()(

5

Network Conditioning
We can make things simpler if we
condition the network on C=c (being true).
Cutset conditioning works to disconnect
mulitply-connected networks

Resulting singly-connected graph can be
solved efficiently using poly-tree algorithms

Network Conditioning

Assume C = c

0.90.1

0.20.8

R HF C

0.10.9

01

10

0.90.1

10

0.10.9

0.30.7
f
f

c

c
c

f f c hhrr

cr

rc

cr

cr

6

Network Conditioning

Assume C = c
We can save on space immediately –
only half of the CPT for H is needed.

0.90.1

0.20.8

R HF C

0.10.9

01

10

0.20.8

10

0.90.1

0.30.7
f
f

c

c
c

f f c hhrr

rc

cr

rc

rc

Network Conditioning

Assume C = c
We can save on space immediately–
only half of the CPT for H is needed.
The network is now singly connected.
(Linear time and space complexity)

0.90.1

0.20.8

R HF C

0.10.9

01

10

0.90.1

0.30.7
f
f

c

c
c

f f c hhrr

rc

cr

7

Network Conditioning
We can make things simpler if we condition the
network on (being true).
The result is a new, simpler network which
allows any computation involving . Just as
easily, another network can be created for
and then we compute P(H) as the sum over
conditions:

cC =
cC =

cC =

∑ ∑∑ 







=

C F R
RHPCRPFCPFPHP)|()|()|()()(

Network Decomposition
Instead of worrying about single
connectivity, it is easier to completely
disconnect a graph into two subgraphs.
Similar to tree-decomposition – which
decomposition to pick?

We can use the BBN structure to decide
Any decomposition works, but some are more
efficient than others.

8

D-trees

D-Tree: full binary tree where leaves are network
CPTs
We should decompose the original network by
instantiating variables shared by left and right
branches

0.90.1

0.20.8

R HF C

0.10.9
01

10

0.90.1

10

0.10.9

0.30.7

f

f c

c cf f c
hh

rr

cr

rc

cr

cr

C

F R

Decomposition

Smaller , less-connected networks
are along the nodes of the d-tree

0.90.1

0.20.8

H

0.10.9
10

10

0.30.7

f

f
c cf f c

hh
rr

rc

cr

F C

RcC =
F C

HR

9

Decomposition

∑ ∑∑ 








C F R
RHPCRPFCPFP)|()|()|()(

∑
F

FCPFP)|()(

H

F C

RF C

HR

The structure of the d-tree also shows how
the computation can be factored
Conditioning imposes independence
between the variables in the factored
portions of the graph

∑
R

RHPRP)|()(

Factoring

All inference tasks are sums of products
of conditional probabilities

F C HR

∑∏

∑∑∑

∈

=

=

FCR FCRi
ii

F C R

XparentsXP

CRHPCRPFCPFPHP

))(|(

),|()|()|()()(

10

Factoring

All inference tasks are sums of products
of conditional probabilities

F C HR

∑ ∑∏

∑∏

∑∑∑









=

=

=

∈

∈

C FR FRi
ii

FCR FCRi
ii

F C R

XparentsXP

XparentsXP

CRHPCRPFCPFPHP

))(|(

))(|(

),|()|()|()()(

Factoring

At each step, you choose a new “cutset”
and work with the subsequent networks

F C HR

∑ ∑∏∑∏

∑ ∑∏

∑∏

∑∑∑

























=









=

=

=

∈∈

∈

∈

C R Ri
ii

F Fi
ii

C FR FRi
ii

FCR FCRi
ii

F C R

XparentsXPXparentsXP

XparentsXP

XparentsXP

CRHPCRPFCPFPHP

))(|())(|(

))(|(

))(|(

),|()|()|()()(

11

Recursive Conditioning Algorithm

Cutsets

Conditioning on cutsets allow us to decompose
the graph.

The union of all cutsets associated
with T’s ancestor nodes

)()(var)(var)(TacutsetTsTsTcutset RL −= I

R HF C

C

F R

CRCF RHF

=)(Tacutset

12

23

12

45

34

67

56

1

78

32 4 5 86 71

1

2

3

4

5

6

7

Cutsets

23

12

45

34

67

56

1

78

32 4 5 86 71

1

2

3

4

5

6

7

Cutsets

23

12

45

34

67

56

1

78

1

12

123

1234

12345

123456

A-Cutsets

13

Some intuition
A cutset tells us what we are conditioning
on
An A-cutset represents all of the variables
being instantiated at that point on the d-
tree.

We produce a solution for a subtree for every
possible instantiation of the variables in the
subtree’s A-cutset.
There can be redundant computation

23

12

45

34

67

56

1

78

1

12

123

1234

12345

123456

A-Cutsets

Contexts
Several variables in the
acutset may never be
used in the subtree.

14

23

12

45

34

67

56

1

78

1

12

123

1234

12345

123456

A-Cutsets

Contexts
Several variables in the
acutset may never be
used in the subtree.
We can instead
remember the “context”
under which any pair of
computations yields the
same result.

)()(vars)(TacutsetTTcontext I=

1

2

3

4

5

6

Contexts

Improved Recursive Conditioning Algorithm

15

Relation to Junction-Trees

Sepsets are equivalent to contexts
Messages passed between links correspond to
contextual information being passed upward in
the d-tree
Passed messages sum out information about a
residual (eliminated) set of variables – this is
equivalent to the cutset.
A d-tree can be built from a tree decomposition

Summary
RC operates in O(n exp(w)) time if you
cache every context. This is better than
being exponential in n.
Caching can be selective, allowing the
algorithm to run with limited memory
Eliminates redundant computation
Intuitively solves a complex event in terms
of smaller events.

