CS 2750 Machine Learning Lecture 21

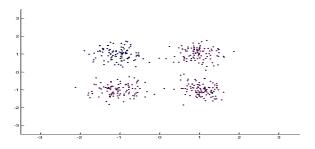
Clustering

Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square

Clustering

Groups together "similar" instances in the data sample **Basic clustering problem:**

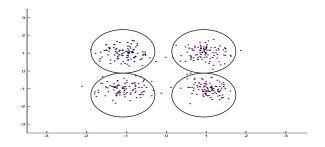
- distribute data into *k* different groups such that data points **similar** to each other are in the same group
- Similarity between data points is typically defined in terms of some distance metric (can be chosen)



Clustering

Groups together "similar" instances in the data sample **Basic clustering problem:**

- distribute data into *k* different groups such that data points **similar** to each other are in the same group
- Similarity between data points is typically defined in terms of some distance metric (can be chosen)



Clustering example

Clustering could be applied to different types of data instances **Example:** partition patients into groups based on similarities

Patient #	Age	Sex	Heart Rate	Blood pressure
Patient 1	55	M	85	125/80
Patient 2	62	M	87	130/85
Patient 3	67	F	80	126/86
Patient 4	65	F	90	130/90
Patient 5	70	M	84	135/85

Clustering example

Clustering could be applied to different types of data instances **Example:** partition patients into groups based on similarities

Patient #	Age	Sex	Heart Rate	Blood pressure
Patient 1	55	M	85	125/80
Patient 2	62	M	87	130/85
Patient 3	67	F	80	126/86
Patient 4	65	F	90	130/90
Patient 5	70	M	84	135/85

Key question: How to define similarity between instances?

Similarity and dissimilarity measures

- Dissimilarity measure
 - Numerical measure of how different two data objects are
 - Often expressed in terms of a distance metric
 - Example: Euclidean: $d(a,b) = \sqrt{\sum_{i=1}^{k} (a_i - b_i)^2}$
- Similarity measure
 - Numerical measure of how alike two data objects are
 - Examples:

• Gaussian kernel:

$$K(a,b) = \frac{1}{(2\pi h^2)^{d/2}} \exp\left[-\frac{\|a-b\|_2^2}{2h^2}\right]$$

• Cosine similarity: $K(a,b) = a^T b$

Distance metrics

Dissimilarity is often measured with the help of a distance metrics.

Properties of distance metrics:

Assume 2 data entries a, b

Positiveness: $d(a,b) \ge 0$

Symmetry: d(a,b) = d(b,a)

Identity: d(a,a) = 0

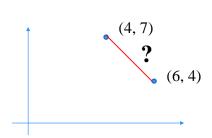
Triangle inequality: $d(a,c) \le d(a,b) + d(b,c)$

Distance metrics

Assume 2 real-valued data-points:

$$a=(6, 4)$$

b=(4, 7)



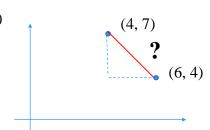
What distance metric to use?

Distance metrics

Assume 2 real-valued data-points:

$$a=(6, 4)$$

$$b=(4, 7)$$



What distance metric to use?

Euclidian:

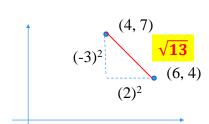
$$d(a,b) = \sqrt{\sum_{i=1}^{k} (a_i - b_i)^2}$$

Distance metrics

Assume 2 real-valued data-points:

$$a=(6, 4)$$

$$b=(4, 7)$$



What distance metric to use?

Euclidian:

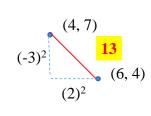
$$d(a,b) = \sqrt{\sum_{i=1}^{k} (a_i - b_i)^2}$$

Distance metrics

Assume 2 real-valued data-points:

$$a=(6, 4)$$

b=(4, 7)



What distance metric to use?

Squared Euclidian: works for an arbitrary k-dimensional

space

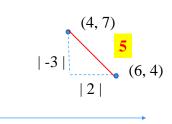
$$d^{2}(a,b) = \sum_{i=1}^{k} (a_{i} - b_{i})^{2}$$

Distance metrics

Assume 2 real-valued data-points:

$$a=(6, 4)$$

$$b=(4, 7)$$



Manhattan distance:

works for an arbitrary k-dimensional space

$$d(a,b) = \sum_{i=1}^{k} |a_i - b_i|$$

Generalized distance metric:

$$d^{2}(\mathbf{a},\mathbf{b}) = (\mathbf{a} - \mathbf{b})^{T} \mathbf{\Gamma}^{-1} (\mathbf{a} - \mathbf{b})$$

- Γ semi-definite positive matrix
- Γ^{-1} is a matrix that weights attributes proportionally to their importance. Different weights lead to a different distance metric.
- If $\Gamma = I$ we get squared Euclidean
 - $\Gamma = \Sigma$ (covariance matrix) we get the **Mahalanobis** distance that takes into account correlations among attributes

Distance measures

Generalized distance metric:

$$d^{2}(\mathbf{a},\mathbf{b}) = (\mathbf{a} - \mathbf{b})^{T} \mathbf{\Gamma}^{-1} (\mathbf{a} - \mathbf{b})$$

Special case: $\Gamma = I$ we get squared Euclidean

Example:

$$\mathbf{a} = \begin{bmatrix} 6 \\ 4 \end{bmatrix} \qquad \qquad \mathbf{b} = \begin{bmatrix} 4 \\ 7 \end{bmatrix} \qquad \qquad \Gamma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \Gamma^{-1}$$

$$d^{2}(\mathbf{a}, \mathbf{b}) = \begin{bmatrix} 2 - 3 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ -3 \end{bmatrix} = 2^{2} + (-3)^{2} = 13$$

Generalized distance metric:

$$d^{2}(\mathbf{a},\mathbf{b}) = (\mathbf{a} - \mathbf{b})^{T} \mathbf{\Gamma}^{-1} (\mathbf{a} - \mathbf{b})$$

Special case: $\Gamma = \Sigma$ defines **Mahalanobis distance**

Example: Assume dimensions are independent in data

Covariance matrix

Inverse covariance

$$\sum = \begin{pmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{pmatrix}$$

$$\sum^{-1} = \begin{pmatrix} \frac{1}{\sigma_1^2} & 0\\ 0 & \frac{1}{\sigma_2^2} \end{pmatrix}$$

ovariance matrix
$$\sum = \begin{pmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{pmatrix}$$

$$\sum^{-1} = \begin{pmatrix} \frac{1}{\sigma_1^2} & 0 \\ 0 & \frac{1}{\sigma_2^2} \end{pmatrix}$$

$$d^2(\mathbf{a}, \mathbf{b}) = \begin{bmatrix} 2 & -3 \end{bmatrix} \begin{bmatrix} \frac{1}{\sigma_1^2} & 0 \\ 0 & \frac{1}{\sigma_2^2} \end{bmatrix} \begin{bmatrix} 2 \\ -3 \end{bmatrix} = \frac{2^2}{\sigma_1^2} + \frac{(-3)^2}{\sigma_2^2}$$
Inverse covariance

Contribution of each dimension to the squared Euclidean is normalized (rescalled) by the variance of that dimension

Distance measures

Assume categorical data where integers represent the different categories:

0 1 1 0 0

0 3 0 1

2 1 1 0 2

1 1 1 1 2

What distance metric to use?

Assume categorical data where integers represent the different categories:

0 1 1 0 0 1 0 3 0 1 2 1 1 0 2 1 1 1 2

What distance metric to use?

Hamming distance: The number of values that need to be changed to make them the same

Distance measures.

Assume pure binary values data:

0 1 1 0 1 1 0 1 0 1 0 1 1 0 1 1 1 1 1 1

One metric is the **Hamming distance:** The number of bits that need to be changed to make the entries the same

How about squared Euclidean?

$$d^{2}(a,b) = \sum_{i=1}^{k} (a_{i} - b_{i})^{2}$$

Assume pure binary values data:

0 1 1 0 1 1 0 1 0 1 0 1 1 0 1 1 1 1 1 1

One metric is the **Hamming distance:** The number of bits that need to be changed to make the entries the same

How about the squared Euclidean?

$$d^{2}(a,b) = \sum_{i=1}^{k} (a_{i} - b_{i})^{2}$$

The same as Hamming distance

Distance measures

Combination of real-valued and categorical attributes

Patient #	Age	Sex	Heart Rate	Blood pressure
Patient 1	55	M	85	125/80
Patient 2	62	M	87	130/85
Patient 3	67	F	80	126/86
Patient 4	65	F	90	130/90
Patient 5	70	M	84	135/85

What distance metric to use?

Combination of real-valued and categorical attributes

Patient #	Age	Sex	Heart Rate	Blood pressure
Patient 1	55	M	85	125/80
Patient 2	62	M	87	130/85
Patient 3	67	F	80	126/86
Patient 4	65	F	90	130/90
Patient 5	70	M	84	135/85

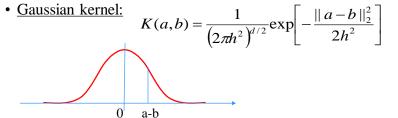
What distance metric to use? Solutions:

- A weighted sum approach: e.g. a mix of Euclidian and Hamming distances for subsets of attributes
- Generalized distance metric (weighted combination, use one-hot representation of categories)

More complex solutions: tensors and decompositions

Distance metrics and similarity

- Dissimilarity/distance measure
- Similarity measure
 - Numerical measure of how alike two data objects are
 - Do not have to satisfy the properties like the ones for the distance metric
 - Examples:
 - Cosine similarity: $K(a,b) = a^T b$



Clustering

Clustering is useful for:

- Similarity/dissimilarity analysis

 Analyze what data points in the sample are close to each other
- Dimensionality reduction
 High dimensional data replaced with a group (cluster) label
- **Data reduction:** Replaces many data-points with a point representing the group mean

Challenges:

- How to measure similarity (problem/data specific)?
- How to choose the number of groups?
 - Many clustering algorithms require us to provide the number of groups ahead of time

Clustering algorithms

- K-means algorithm
- Probabilistic (soft) clustering methods (with EM) = soft clustering
 - Latent variable models: class (cluster) is represented by a latent (hidden) variable value
 - Every point goes to the class with the highest posterior
 - Examples: mixture of Gaussians, Naïve Bayes with a hidden class
- Hierarchical methods
 - Agglomerative
 - Divisive

K-means clustering algorithm

- an iterative clustering algorithm
- works in the d-dimensional R space representing \mathbf{x}

K-Means clusterting algorithm:

Initialize randomly k values of means (centers)

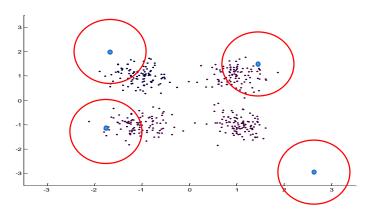
Repeat

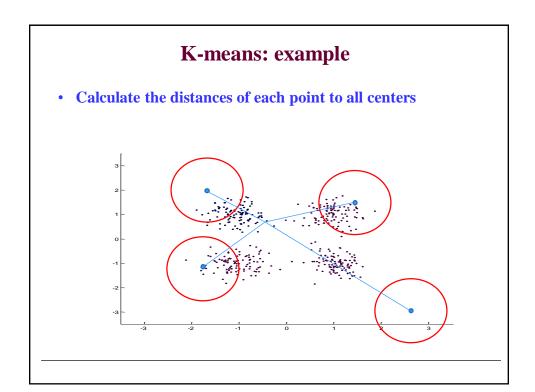
- Partition the data according to the current set of means (using the similarity measure)
- Move the means to the center of the data in the current partition

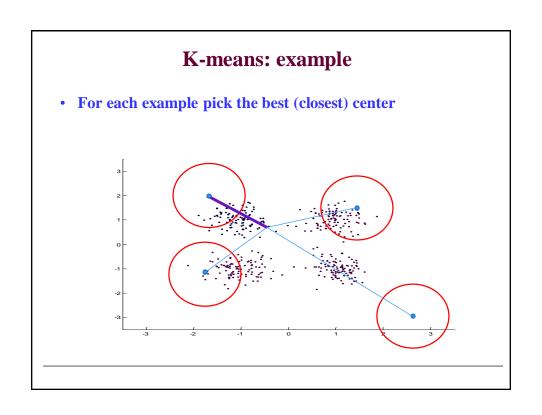
Until no change in the means

K-means: example

• Initialize the cluster centers

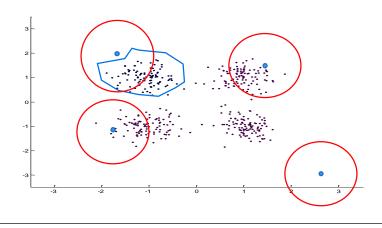






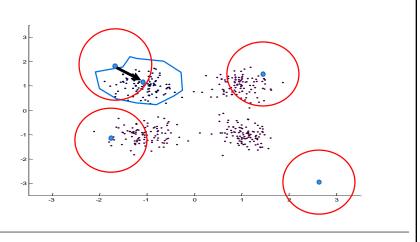
K-means: example

• Recalculate the new mean from all data examples assigned to the same cluster center



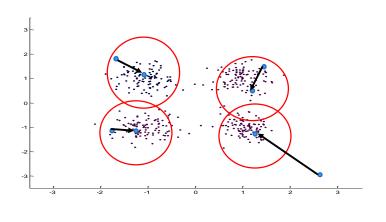
K-means: example

• Shift the cluster center to the new mean



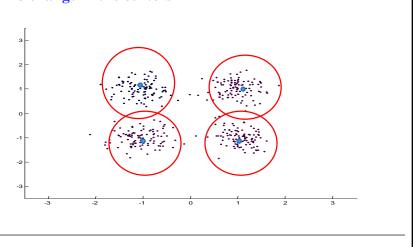
K-means: example

• Shift the cluster centers to the new calculated means



K-means: example

- And repeat the iteration ...
- Till no change in the centers



K-means clustering algorithm

K-Means algorithm:

Initialize randomly *k* values of means (centers)

Repeat

- Partition the data according to the current set of means (using the similarity measure)
- Move the means to the center of the data in the current partition

Until no change in the means

Properties:

 Minimizes the sum of squared center-point distances for all clusters

$$\min_{\mathbf{S}} \sum_{i=1}^{k} \sum_{x_j \in S_i} ||x_j - u_i||^2 \quad u_i = \text{center of cluster } S_i$$

K-means clustering algorithm

- Properties:
 - converges to centers minimizing the sum of squared center-point distances (still local optima)
 - The result is **sensitive** to the initial means' values
- Advantages:
 - Simplicity
 - Generality can work for more than one distance measure
- Drawbacks:
 - Can perform poorly with overlapping regions
 - Lack of robustness to outliers
 - Good for attributes (features) with continuous values
 - Allows us to compute cluster means
 - · k-medoid algorithm used for discrete data

Probabilistic (soft) clustering algorithms

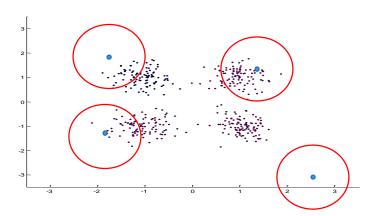
• Latent variable models

Examples: Mixture of Gaussians
Naïve Bayes with hidden class

- Iterative algorithm:
 - Steps correspond to the steps of the EM algorithm
- Mixture of Gaussian model:
 - Difference from k-means: each mean is responsible for every data instance, responsibilities can be different based on the distance of a Gaussian from the data instance
- Final clusters:
 - the data point belongs to the class with the highest posterior

Soft clustering

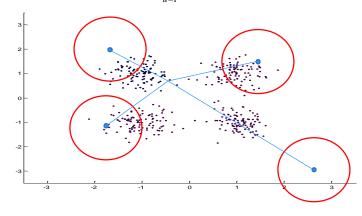
• Gaussians centered at random mean points



Soft clustering

- Each Gaussian is responsible for every data instance
 - Responsibility

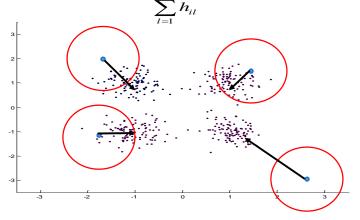
$$h_{il} = \frac{p(C_l = i \mid \Theta') p(x_l \mid C_l = i, \Theta')}{\sum_{u=1}^{m} p(C_l = u \mid \Theta') p(x_l \mid C_l = u, \Theta')}$$



Soft clustering

• Each Gaussian is repositioned by recalculating the Gaussian means: $\sum_{h=\mathbf{x}}^{N} h_{h}\mathbf{x}$.

 $rac{\displaystyle\sum_{l=1}^{}h_{il}\mathbf{x}_{l}}{N}$

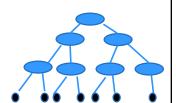


Probabilistic (soft) clustering algorithms

- Advantages:
 - Good performance on overlapping regions
 - Robustness to outliers
 - Data attributes can have different types of values
- Drawbacks:
 - EM is computationally expensive and can take time to converge
 - Density model should be given in advance

Hierarchical clustering

• Builds a hierarchy of clusters (groups) with singleton groups at the bottom and 'all points' group on the top



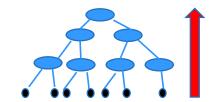
Uses many different dissimilarity measures

- Pure real-valued data-points:
 - Euclidean, Manhattan, Minkowski **Pure categorical data:**
 - Hamming distance,
 - Combination of real-valued and categorical attributes
 - Weighted, or Euclidean

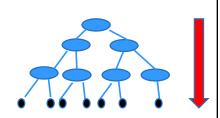
Hierarchical clustering

Two versions of the hierarchical clustering

- Agglomerative approach
 - Merge pair of clusters in a bottom-up fashion, starting from singleton clusters



- Divisive approach:
 - Splits clusters in top-down fashion, starting from one complete cluster



Hierarchical (agglomerative) clustering

Approach:

- Compute dissimilarity matrix for all pairs of points
 - uses standard or other distance measures
- Construct clusters greedily:
 - Agglomerative approach
 - Merge pair of clusters in a bottom-up fashion, starting from singleton clusters
- Stop the greedy construction when some criterion is satisfied
 - E.g. fixed number of clusters

Hierarchical (agglomerative) clustering

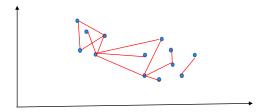
Approach:

- Compute dissimilarity matrix for all pairs of points
 - uses standard or other distance measures

Hierarchical (agglomerative) clustering

Approach:

- · Compute dissimilarity matrix for all pairs of points
 - uses standard or other distance measures

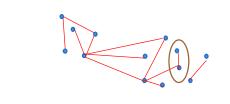


N datapoints, O(N²) pairs, O(N²) distances

Hierarchical (agglomerative) clustering

Approach:

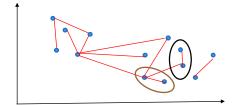
- · Compute dissimilarity matrix for all pairs of points
 - uses standard or other distance measures
- Construct clusters greedily:
 - Agglomerative approach
 - Merge pair of clusters in a bottom-up fashion, starting from singleton clusters



Hierarchical (agglomerative) clustering

Approach:

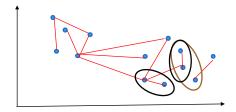
- Compute dissimilarity matrix for all pairs of points
 - uses standard or other distance measures
- Construct clusters greedily:
 - Agglomerative approach
 - Merge pair of clusters in a bottom-up fashion, starting from singleton clusters



Hierarchical (agglomerative) clustering

Approach:

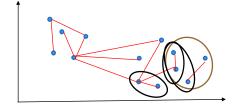
- Compute dissimilarity matrix for all pairs of points
 - uses standard or other distance measures
- Construct clusters greedily:
 - Agglomerative approach
 - Merge pair of clusters in a bottom-up fashion, starting from singleton clusters



Hierarchical (agglomerative) clustering

Approach:

- Compute dissimilarity matrix for all pairs of points
 - uses standard or other distance measures
- Construct clusters greedily:
 - Agglomerative approach
 - Merge pair of clusters in a bottom-up fashion, starting from singleton clusters



Cluster merging

- Agglomerative approach
 - Merge pair of clusters in a bottom-up fashion, starting from singleton clusters
 - Merge clusters based on cluster (or linkage) distances.
 Defined in terms of point distances. Examples:

Cluster merging

- Agglomerative approach
 - Merge pair of clusters in a bottom-up fashion, starting from singleton clusters
 - Merge clusters based on cluster (or linkage) distances.
 Defined in terms of point distances. Examples:

Max distance $d_{\max}(C_i, C_j) = \max_{p \in C_i, q \in C_j} d(p, q)$

Cluster merging

- Agglomerative approach
 - Merge pair of clusters in a bottom-up fashion, starting from singleton clusters
 - Merge clusters based on cluster (or linkage) distances.
 Defined in terms of point distances. Examples:

Mean distance
$$d_{mean}(C_i, C_j) = \left| d \left(\frac{1}{|C_i|} \sum_i p_i; \frac{1}{|C_j|} \sum_j q_j \right) \right|$$

Hierarchical (agglomerative) clustering

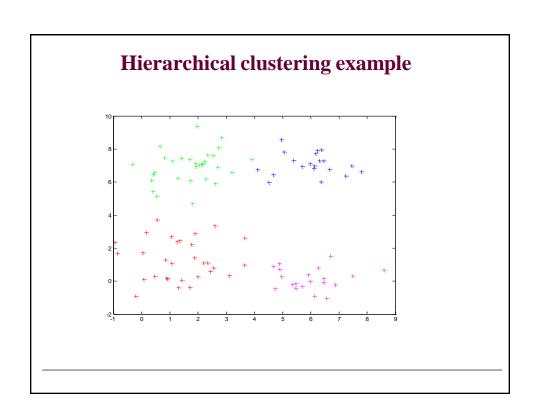
Approach:

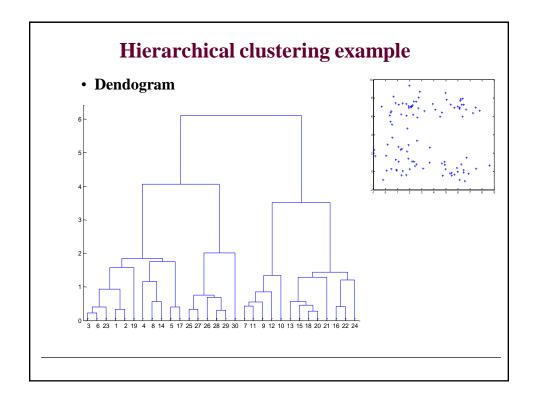
- Compute dissimilarity matrix for all pairs of points
 - uses standard or other distance measures
- Construct clusters greedily:
 - Agglomerative approach
 - Merge pair of clusters in a bottom-up fashion, starting from singleton clusters
- Stop the greedy construction when some criterion is satisfied
 - E.g. fixed number of clusters

Hierarchical (divisive) clustering

Approach:

- Compute dissimilarity matrix for all pairs of points
 - uses standard distance or other dissimilarity measures
- Construct clusters greedily:
 - Agglomerative approach
 - Merge pair of clusters in a bottom-up fashion, starting from singleton clusters
 - Divisive approach:
 - Splits clusters in top-down fashion, starting from one complete cluster
- Stop the greedy construction when some criterion is satisfied
 - E.g. fixed number of clusters





Hierarchical clustering

• Advantage:

Smaller computational cost; avoids scanning all possible clusterings

• Disadvantage:

 Greedy choice fixes the order in which clusters are merged; cannot be repaired

• Partial solution:

 combine hierarchical clustering with iterative algorithms like k-means algorithm

Other clustering methods

- Spectral clustering
 - Relies on similarity matrix and its spectral decomposition (eigenvalues and eigenvectors)