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CS 2750 Machine Learning

Lecture 16

Milos Hauskrecht

milos@pitt.edu

5329 Sennott Square

Bayesian belief networks II

Density estimation

Data: 

Objective: try to estimate the underlying true probability 
distribution over variables       ,           ,  using examples in  D

Standard (iid) assumptions: Samples

• are independent of each other

• come from the same (identical) distribution (fixed          )
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Modeling complex distributions

Question: How to model and learn complex multivariate 

distributions            with a large number of variables?

Example: modeling of disease – symptoms relations

• Disease: pneumonia

• Patient symptoms (findings, lab tests):

– Fever, Cough, Paleness, WBC (white blood cells) count, 

Chest pain, etc.

• Model of the full joint distribution: 

P(Pneumonia, Fever, Cough, Paleness, WBC, Chest pain)

One probability per assignment of values to variables: 

P(Pneumonia =T, Fever =T, Cought=T, WBC=High, Chest pain=T)

)(ˆ Xp

Bayesian belief networks (BBNs)

Bayesian belief networks (late 80s, beginning of 90s)

Key features: 

• Represent the full joint distribution over the variables more 

compactly with a smaller number of parameters. 

• Take advantage of conditional and marginal independences

among random variables

• X and Y are independent

• X and Y are conditionally independent given Z
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Bayesian belief network

Burglary Earthquake

JohnCalls MaryCalls

Alarm

P(B) P(E)

P(A|B,E)

P(J|A) P(M|A)

1. Directed acyclic graph

• Nodes = random variables

Burglary, Earthquake, Alarm, Mary calls and John calls

• Links = direct (causal) dependencies between variables.

The chance of Alarm being is influenced by Earthquake, 

The chance of John calling is affected by the Alarm

Bayesian belief network

2. Local conditional distributions 

• relating variables and their parents

Burglary Earthquake

JohnCalls MaryCalls

Alarm

P(B) P(E)

P(A|B,E)

P(J|A) P(M|A)
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Bayesian belief network

Burglary Earthquake

JohnCalls MaryCalls

Alarm

B   E T       F

T   T 0.95   0.05
T   F     0.94   0.06
F   T     0.29   0.71
F   F     0.001 0.999

P(B)

0.001 0.999

P(E)

0.002  0.998

A   T      F

T    0.90  0.1
F    0.05  0.95

A      T      F

T    0.7    0.3
F    0.01   0.99

P(A|B,E)

P(J|A) P(M|A)

T        F T         F

Full joint distribution in BBNs

Full joint distribution is defined in terms of local conditional 

distributions (obtained via the chain rule):
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Example:

)|()|(),|()()( TAFMPTATJPTETBTAPTEPTBP 

Then its probability is:

Assume the following assignment

of values to random variables

FMTJTATETB  ,,,,
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Bayesian belief networks (BBNs)

Bayesian belief networks 

• Represent the full joint distribution over the variables more 

compactly using the product of local conditionals. 

• But how did we get to local parameterizations?

Answer:

• Chain rule + 

• Graphical structure encodes conditional and marginal 

independences among random variables

• A and B are independent

• A and B are conditionally independent given C

• The graph structure implies the decomposition !!!

)()(),( BPAPBAP 

)|()|()|,( CBPCAPCBAP )|(),|( CAPBCAP 

Independences in BBNs

3 basic independence structures:

Burglary

JohnCalls

Alarm

Burglary

Alarm

Earthquake

JohnCalls

Alarm

MaryCalls

1. 2. 3.



6

Independences in BBNs

1. JohnCalls is independent of Burglary given Alarm

Burglary

JohnCalls

Alarm

Burglary

Alarm

Earthquake

JohnCalls

Alarm

MaryCalls

1. 2. 3.

)|(),|( AJPBAJP 

)|()|()|,( ABPAJPABJP 

Independences in BBNs

2.   Burglary is independent of Earthquake (not knowing Alarm) 

Burglary and Earthquake become dependent given Alarm !!

Burglary

JohnCalls

Alarm

JohnCalls

Alarm

MaryCalls

1. 3.

)()(),( EPBPEBP 

Burglary

Alarm

Earthquake

2.
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Independences in BBNs

3.   MaryCalls is independent of JohnCalls given Alarm

Burglary

JohnCalls

Alarm

Burglary

Alarm

Earthquake

1. 2.

JohnCalls

Alarm

3.

MaryCalls

)|(),|( AJPMAJP 

)|()|()|,( AMPAJPAMJP 

Independences in BBN

• BBN distribution models many conditional independence 
relations among distant variables and sets of variables

• These are defined in terms of the graphical criterion called d-
separation

• D-separation and independence

– Let X,Y and Z be three sets of nodes

– If X and Y are d-separated by Z,  then X and Y are 
conditionally independent given Z

• D-separation :

– A is d-separated from B given C if every undirected path 
between them is blocked with C

• Path blocking

– 3 cases that expand on three basic independence structures
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Undirected path blocking

A is d-separated from B given C if every undirected path 

between them is blocked

A BC

Undirected path blocking

A is d-separated from B given C if every undirected path 

between them is blocked

A BC
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Undirected path blocking

A is d-separated from B given C if every undirected path 

between them is blocked

• 1.  Path blocking with a linear substructure

Z in C

X Y

X in A Y in B

Z

A BC

Undirected path blocking

A is d-separated from B given C if every undirected path 

between them is blocked

• 2.  Path blocking with the wedge substructure

Z in C
X Y

X in A Y in B

Z
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Undirected path blocking

A is d-separated from B given C if every undirected path 

between them is blocked

• 3.  Path blocking with the vee substructure

Z or any of its descendants not in C

X
Y

X in A Y in B

Z

Independences in BBNs

• Earthquake and Burglary are independent given MaryCalls         ?

Burglary

JohnCalls

Alarm

Earthquake

MaryCalls

RadioReport
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CS 1571 Intro to AI

Independences in BBNs

• Earthquake and Burglary are independent given MaryCalls         F

• Burglary and MaryCalls are independent (not knowing Alarm)   ?

Burglary

JohnCalls

Alarm

Earthquake

MaryCalls

RadioReport

Independences in BBNs

• Earthquake and Burglary are independent given MaryCalls         F

• Burglary and MaryCalls are independent (not knowing Alarm)   F

• Burglary and RadioReport are independent given Earthquake      ?

Burglary

JohnCalls

Alarm

Earthquake

MaryCalls

RadioReport
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Independences in BBNs

• Earthquake and Burglary are independent given MaryCalls         F

• Burglary and MaryCalls are independent (not knowing Alarm)   F

• Burglary and RadioReport are independent given Earthquake      T

• Burglary and RadioReport are independent given MaryCalls        ?

Burglary

JohnCalls

Alarm

Earthquake

MaryCalls

RadioReport

Independences in BBNs

• Earthquake and Burglary are independent given MaryCalls         F

• Burglary and MaryCalls are independent (not knowing Alarm)   F

• Burglary and RadioReport are independent given Earthquake      T

• Burglary and RadioReport are independent given MaryCalls        F

Burglary

JohnCalls

Alarm

Earthquake

MaryCalls

RadioReport
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Full joint distribution in BBNs

M

A

B

J

E
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Rewrite the full joint probability using the 

product rule:

Full joint distribution in BBNs

M

A

B

J

E

 ),,,,( FMTJTATETBP

),,,(),,,|( FMTATETBPFMTATETBTJP 

Rewrite the full joint probability using the 

product rule:

Product rule
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Full joint distribution in BBNs

M

A

B

J

E

 ),,,,( FMTJTATETBP

),,,(),,,|( FMTATETBPFMTATETBTJP 

),,,()|( FMTATETBPTATJP 

Rewrite the full joint probability using the 

product rule:

Product rule

Full joint distribution in BBNs

M

A

B

J

E
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),,,()|( FMTATETBPTATJP 

),,(),,|( TATETBPTATETBFMP 

Rewrite the full joint probability using the 

product rule:

Product rule
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Full joint distribution in BBNs

M

A

B

J

E
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),,,(),,,|( FMTATETBPFMTATETBTJP 

),,,()|( FMTATETBPTATJP 

),,(),,|( TATETBPTATETBFMP 

),,()|( TATETBPTAFMP 

Rewrite the full joint probability using the 

product rule:

Full joint distribution in BBNs

M

A

B

J

E
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),(),|( TETBPTETBTAP 

Rewrite the full joint probability using the 

product rule:
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Full joint distribution in BBNs

M

A

B

J

E
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),,,()|( FMTATETBPTATJP 

),,(),,|( TATETBPTATETBFMP 

),,()|( TATETBPTAFMP 

),(),|( TETBPTETBTAP 

)()( TEPTBP 

Rewrite the full joint probability using the 

product rule:

Full joint distribution in BBNs

M
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J

E
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),(),|( TETBPTETBTAP 

)()( TEPTBP 

Rewrite the full joint probability using the 

product rule:
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# of parameters of the full joint: 

Parameter complexity problem

• In the BBN the full joint distribution is defined as:

• What did we save?

Alarm example: binary (True, False) variables

Burglary

JohnCalls

Alarm

Earthquake

MaryCalls

))(|(),..,,(
,..1
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# of parameters of the full joint: 

Parameter complexity problem

• In the BBN the full joint distribution is defined as:

• What did we save?

Alarm example: binary (True, False) variables

Burglary

JohnCalls

Alarm

Earthquake

MaryCalls

))(|(),..,,(
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One parameter depends on the rest:

31125 
# of parameters of the BBN:
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Bayesian belief network: parameters count

Burglary Earthquake

JohnCalls MaryCalls

Alarm

B   E T       F

T   T 0.95   0.05
T   F     0.94   0.06
F   T     0.29   0.71
F   F     0.001 0.999

P(B)

0.001 0.999

P(E)

0.002  0.998

A   T      F

T    0.90  0.1
F    0.05  0.95

A      T      F

T    0.7    0.3
F    0.01   0.99

P(A|B,E)

P(J|A) P(M|A)

T        F T         F

2 2

8

4 4

Total: 20

# of parameters of the full joint: 

Parameter complexity problem

• In the BBN the full joint distribution is defined as:

• What did we save?

Alarm example: 5 binary (True, False) variables

Burglary

JohnCalls

Alarm

Earthquake

MaryCalls

))(|(),..,,(
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3225 

31125 

One parameter depends on the rest:

# of parameters of the BBN:

20)2(2)2(22 23 

One parameter in every conditional depends on the rest: 

?
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Bayesian belief network: free parameters

Burglary Earthquake

JohnCalls MaryCalls

Alarm

B   E T       F

T   T 0.95   0.05
T   F     0.94   0.06
F   T     0.29   0.71
F   F     0.001 0.999

P(B)

0.001 0.999

P(E)

0.002  0.998

A   T      F

T    0.90  0.1
F    0.05  0.95

A      T      F

T    0.7    0.3
F    0.01   0.99

P(A|B,E)

P(J|A) P(M|A)

T        F T         F

1 1

4

2 2

Total free 

params: 10

= 1- 0.95

= 1- 0.002

# of parameters of the full joint: 

Parameter complexity problem

• In the BBN the full joint distribution is defined as:

• What did we save?

Alarm example: 5 binary (True, False) variables

Burglary

JohnCalls

Alarm

Earthquake

MaryCalls

))(|(),..,,(
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31125 

One parameter depends on the rest:

# of parameters of the BBN:

20)2(2)2(22 23 

One parameter in every conditional depends on the rest: 

10)1(2)2(222 
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BBNs examples

• In various areas:

– Intelligent user interfaces (Microsoft)

– Troubleshooting, diagnosis of a technical device

– Medical diagnosis:

• Pathfinder CPSC

• Munin

• QMR-DT

– Collaborative filtering

– Military applications

– Insurance, credit applications

Diagnosis of car engine

• Diagnose the engine start problem 
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Car insurance example

• Predict claim costs (medical, liability) based on application data

(ICU) Alarm network
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CPCS

• Computer-based Patient Case Simulation system (CPCS-PM) 

developed by Parker and Miller (at University of Pittsburgh)

• 422 nodes and 867 arcs

Naïve Bayes model

A special (simple) Bayesian belief network

• Defines a generative classifier model

• Model of  P(x ,y ) = P(x | y) P(y)

– Class variable y

p(y)

– Attributes are independent given y

Learning:

• Parameterize models of p(y) and all p(x j | y=i) 

• ML estimates of the parameters 

Class y

1x 2x nx

. .

)|()|(
1

iyxpiyp
d

j

j  


x
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Naïve Bayes model

A special (simple) Bayesian belief network

• Defines a generative classifier model

• Model of P(x ,y ) = P(x | y) P(y)

Classification: given x select the class

– Select the class with the maximum posterior

– Calculation of a posterior is an example of BBN inference

Remember: we can calculate the probabilities from the full joint

Class Y

1X 2X nX

. .
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