Bayesian belief networks II

Milos Hauskrecht
milos@pitt.edu
5329 Sennott Square

Density estimation

Data: $D=\left\{D_{1}, D_{2}, . ., D_{n}\right\}$
$D_{i}=\mathbf{x}_{i} \quad$ a vector of attribute values
Objective: try to estimate the underlying true probability distribution over variables $\mathbf{X}, p(\mathbf{X})$, using examples in D

Standard (iid) assumptions: Samples

- are independent of each other
- come from the same (identical) distribution (fixed $p(\mathbf{X})$)

Modeling complex distributions

Question: How to model and learn complex multivariate distributions $\hat{p}(\mathbf{X})$ with a large number of variables?
Example: modeling of disease - symptoms relations

- Disease: pneumonia
- Patient symptoms (findings, lab tests):
- Fever, Cough, Paleness, WBC (white blood cells) count, Chest pain, etc.
- Model of the full joint distribution:

P(Pneumonia, Fever, Cough, Paleness, WBC, Chest pain)

One probability per assignment of values to variables:
$\mathrm{P}($ Pneumonia $=\mathrm{T}$, Fever $=\mathrm{T}$, Cought=T, WBC=High, Chest pain=T $)$

Bayesian belief networks (BBNs)

Bayesian belief networks (late 80s, beginning of 90s)
Key features:

- Represent the full joint distribution over the variables more compactly with a smaller number of parameters.
- Take advantage of conditional and marginal independences among random variables
- X and Y are independent $\quad P(X, Y)=P(X) P(Y)$
- X and Y are conditionally independent given Z

$$
\begin{aligned}
& P(X, Y \mid Z)=P(X \mid Z) P(Y \mid Z) \\
& P(X \mid Y, Z)=P(X \mid Z)
\end{aligned}
$$

Bayesian belief network

1. Directed acyclic graph

- Nodes = random variables

Burglary, Earthquake, Alarm, Mary calls and John calls

- Links = direct (causal) dependencies between variables. The chance of Alarm being is influenced by Earthquake, The chance of John calling is affected by the Alarm

Bayesian belief network

2. Local conditional distributions

- relating variables and their parents

Bayesian belief network

Full joint distribution in BBNs

Full joint distribution is defined in terms of local conditional distributions (obtained via the chain rule):

$$
\mathbf{P}\left(X_{1}, X_{2}, . ., X_{n}\right)=\prod_{i=1, . . n} \mathbf{P}\left(X_{i} \mid p a\left(X_{i}\right)\right)
$$

Example:

Assume the following assignment of values to random variables

$$
B=T, E=T, A=T, J=T, M=F
$$

Then its probability is:

$$
\begin{aligned}
& P(B=T, E=T, A=T, J=T, M=F)= \\
& \quad P(B=T) P(E=T) P(A=T \mid B=T, E=T) P(J=T \mid A=T) P(M=F \mid A=T)
\end{aligned}
$$

Bayesian belief networks (BBNs)

Bayesian belief networks

- Represent the full joint distribution over the variables more compactly using the product of local conditionals.
- But how did we get to local parameterizations?

Answer:

- Chain rule +
- Graphical structure encodes conditional and marginal independences among random variables
- A and B are independent $P(A, B)=P(A) P(B)$
- A and B are conditionally independent given \mathbf{C}
$P(A \mid C, B)=P(A \mid C)$
$P(A, B \mid C)=P(A \mid C) P(B \mid C)$
- The graph structure implies the decomposition !!!

Independences in BBNs

3 basic independence structures:

Independences in BBNs

1. JohnCalls is independent of Burglary given Alarm

$$
\begin{gathered}
P(J \mid A, B)=P(J \mid A) \\
P(J, B \mid A)=P(J \mid A) P(B \mid A)
\end{gathered}
$$

Independences in BBNs

1.

2. Burglary is independent of Earthquake (not knowing Alarm) Burglary and Earthquake become dependent given Alarm !!

$$
P(B, E)=P(B) P(E)
$$

Independences in BBNs

1.

3. MaryCalls is independent of JohnCalls given Alarm

$$
\begin{gathered}
P(J \mid A, M)=P(J \mid A) \\
P(J, M \mid A)=P(J \mid A) P(M \mid A)
\end{gathered}
$$

Independences in BBN

- BBN distribution models many conditional independence relations among distant variables and sets of variables
- These are defined in terms of the graphical criterion called dseparation
- D-separation and independence
- Let X, Y and Z be three sets of nodes
- If X and Y are d-separated by Z, then X and Y are conditionally independent given Z
- D-separation :
- A is d-separated from B given C if every undirected path between them is blocked with \mathbf{C}
- Path blocking
- 3 cases that expand on three basic independence structures

Undirected path blocking

A is d-separated from B given C if every undirected path between them is blocked

\qquad

Undirected path blocking

A is d-separated from B given C if every undirected path between them is blocked

Undirected path blocking

A is d-separated from B given C if every undirected path between them is blocked

- 1. Path blocking with a linear substructure

Undirected path blocking

A is d-separated from B given C if every undirected path between them is blocked

- 2. Path blocking with the wedge substructure

X in A
Y in B

Undirected path blocking

A is d-separated from B given C if every undirected path between them is blocked

- 3. Path blocking with the vee substructure

Independences in BBNs

- Earthquake and Burglary are independent given MaryCalls

Independences in BBNs

- Earthquake and Burglary are independent given MaryCalls F
- Burglary and MaryCalls are independent (not knowing Alarm) ?

Independences in BBNs

- Earthquake and Burglary are independent given MaryCalls F
- Burglary and MaryCalls are independent (not knowing Alarm) F
- Burglary and RadioReport are independent given Earthquake ?

Independences in BBNs

- Earthquake and Burglary are independent given MaryCalls F
- Burglary and MaryCalls are independent (not knowing Alarm) F
- Burglary and RadioReport are independent given Earthquake T
- Burglary and RadioReport are independent given MaryCalls ?

Independences in BBNs

- Earthquake and Burglary are independent given MaryCalls F
- Burglary and MaryCalls are independent (not knowing Alarm) F
- Burglary and RadioReport are independent given Earthquake \mathbf{T}
- Burglary and RadioReport are independent given MaryCalls F

Full joint distribution in BBNs

Rewrite the full joint probability using the product rule:

$$
P(B=T, E=T, A=T, J=T, M=F)=
$$

Full joint distribution in BBNs

Rewrite the full joint probability using the product rule:

$$
P(B=T, E=T, A=\underset{\text { Product rule }}{T, J=T, M=F)=}
$$

$=P(J=T \mid B=T, E=T, A=T, M=F) P(B=T, E=T, A=T, M=F)$

Full joint distribution in BBNs

Rewrite the full joint probability using the product rule:

$$
\begin{aligned}
& P(B=T, E=T, A=T, J=T, M=F)={ }_{\text {Product rule }} \\
& =P(J=T \mid B=T, E=T, A=T, M=F) P(B=T, E=T, A=T, M=F) \\
& =P(J=T \mid A=T) P(B=T, E=T, A=T, M=F)
\end{aligned}
$$

Full joint distribution in BBNs

Rewrite the full joint probability using the product rule:

$$
\begin{aligned}
& P(B=T, E=T, A=T, J=T, M=F)= \\
& =P(J=T \mid B=T, E=T, A=T, M=F) P(B=T, E=T, A=T, M=F) \\
& =\underline{P(J=T \mid A=T)} P(B=T, E=T, A=T, M=F) \text { Product rule } \\
& P(M=F \mid B=T, E=T, A=T) P(B=T, E=T, A=T)
\end{aligned}
$$

Full joint distribution in BBNs

Rewrite the full joint probability using the product rule:

$$
P(B=T, E=T, A=T, J=T, M=F)=
$$

$$
\begin{array}{r}
=P(J=T \mid B=T, E=T, A=T, M=F) P(B=T, E=T, A=T, M=F) \\
=P(J=T \mid A=T) P(B=T, E=T, A=T, M=F) \\
\\
P(M=F \mid B=T, E=T, A=T) P(B=T, E=T, A=T) \\
\\
P(M=F \mid A=T) P(B=T, E=T, A=T)
\end{array}
$$

Full joint distribution in BBNs

Rewrite the full joint probability using the product rule:

$$
\begin{aligned}
& P(B=T, E=T, A=T, J=T, M=F)= \\
& =P(J=T \mid B=T, E=T, A=T, M=F) P(B=T, E=T, A=T, M=F) \\
& =\underline{P(J=T \mid A=T)} P(B=T, E=T, A=T, M=F) \\
& \qquad \begin{array}{l}
P(M=F \mid B=T, E=T, A=T) P(B=T, E=T, A=T) \\
\underline{P(M=F \mid A=T)} P(B=T, E=T, A=T)
\end{array} \\
& \underline{P(A=T \mid B=T, E=T)} P(B=T, E=T)
\end{aligned}
$$

Full joint distribution in BBNs

Rewrite the full joint probability using the product rule:

$$
P(B=T, E=T, A=T, J=T, M=F)=
$$

$$
\begin{aligned}
& =P(J=T \mid B=T, E=T, A=T, M=F) P(B=T, E=T, A=T, M=F) \\
& =\underline{P(J=T \mid A=T)} P(B=T, E=T, A=T, M=F) \\
& \begin{array}{r}
P(M=F \mid B=T, E=T, A=T) P(B=T, E=T, A=T) \\
\underline{P(M=F \mid A=T)} P(B=T, E=T, A=T) \\
\\
P(B=T) P(E=T)
\end{array}
\end{aligned}
$$

Full joint distribution in BBNs

Rewrite the full joint probability using the product rule:

$$
\begin{aligned}
& P(B=T, E=T, A=T, J=T, M=F)= \\
& =P(J=T \mid B=T, E=T, A=T, M=F) P(B=T, E=T, A=T, M=F) \\
& =\underline{P(J=T \mid A=T)} P(B=T, E=T, A=T, M=F) \\
& P(M=F \mid B=T, E=T, A=T) P(B=T, E=T, A=T) \\
& P(M=F \mid A=T) P(B=T, E=T, A=T) \\
& \underline{P(A=T \mid B=T, E=T)} P(B=T, E=T) \\
& P(B=T) P(E=T) \\
& =P(J=T \mid A=T) P(M=F \mid A=T) P(A=T \mid B=T, E=T) P(B=T) P(E=T)
\end{aligned}
$$

Parameter complexity problem

- In the BBN the full joint distribution is defined as:

$$
\mathbf{P}\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\prod_{i=1, \ldots n} \mathbf{P}\left(X_{i} \mid p a\left(X_{i}\right)\right)
$$

- What did we save?

Alarm example: binary (True, False) variables \# of parameters of the full joint: ?

Parameter complexity problem

- In the BBN the full joint distribution is defined as:
- What did we save?

Alarm example: binary (True, False) variables \# of parameters of the full joint:

$$
2^{5}=32
$$

One parameter depends on the rest: $2^{5}-1=31$
\# of parameters of the BBN :

$$
?
$$

Bayesian belief network: parameters count

Parameter complexity problem

- In the BBN the full joint distribution is defined as:

$$
\begin{aligned}
& \quad \mathbf{P}\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\prod_{i=1, . . n} \mathbf{P}\left(X_{i} \mid p a\left(X_{i}\right)\right) \\
& \text { - What did we save? }
\end{aligned}
$$

Alarm example: 5 binary (True, False) variables \# of parameters of the full joint:

$$
2^{5}=32
$$

One parameter depends on the rest:

$$
2^{5}-1=31
$$

\# of parameters of the BBN :

$$
2^{3}+2\left(2^{2}\right)+2(2)=20
$$

One parameter in every conditional depends on the rest:

Bayesian belief network: free parameters

Parameter complexity problem

- In the BBN the full joint distribution is defined as:

$$
\begin{aligned}
& \quad \mathbf{P}\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\prod_{i=1, \ldots n} \mathbf{P}\left(X_{i} \mid p a\left(X_{i}\right)\right) \\
& \text { - What did we save? }
\end{aligned}
$$

Alarm example: 5 binary (True, False) variables \# of parameters of the full joint:

$$
2^{5}=32
$$

One parameter depends on the rest:

$$
2^{5}-1=31
$$

\# of parameters of the BBN :

$$
2^{3}+2\left(2^{2}\right)+2(2)=20
$$

One parameter in every conditional depends on the rest:

$$
2^{2}+2(2)+2(1)=10
$$

BBNs examples

- In various areas:
- Intelligent user interfaces (Microsoft)
- Troubleshooting, diagnosis of a technical device
- Medical diagnosis:
- Pathfinder CPSC
- Munin
- QMR-DT
- Collaborative filtering
- Military applications
- Insurance, credit applications

Diagnosis of car engine

- Diagnose the engine start problem

Car insurance example

- Predict claim costs (medical, liability) based on application data

(ICU) Alarm network

CPCS

- Computer-based Patient Case Simulation system (CPCS-PM) developed by Parker and Miller (at University of Pittsburgh)
- 422 nodes and 867 arcs

Naïve Bayes model

A special (simple) Bayesian belief network

- Defines a generative classifier model
- Model of $\mathrm{P}(\mathbf{x}, \mathrm{y})=\mathrm{P}(\mathbf{x} \mid \mathrm{y}) \mathrm{P}(\mathrm{y})$
- Class variable y

$$
\mathrm{p}(\mathrm{y})
$$

Class y

- Attributes are independent given y

$$
p(\mathbf{x} \mid y=i)=\prod_{j=1}^{d} p\left(x_{j} \mid y=i\right)
$$

Learning:

- Parameterize models of $\mathrm{p}(\mathrm{y})$ and all $\mathrm{p}\left(x_{j} \mid y=i\right)$
- ML estimates of the parameters

Naïve Bayes model

A special (simple) Bayesian belief network

- Defines a generative classifier model
- Model of $\mathrm{P}(\mathbf{x}, \mathrm{y})=\mathrm{P}(\mathbf{x} \mid \mathrm{y}) \mathrm{P}(\mathrm{y})$

Classification: given \boldsymbol{x} select the class

Class Y

- Select the class with the maximum posterior
- Calculation of a posterior is an example of BBN inference

$$
p(y=i \mid \mathbf{x})=\frac{p(y=i) p(\mathbf{x} \mid y=i)}{\sum_{u=1}^{k} p(y=u) p(\mathbf{x} \mid y=u)}=\frac{p(y=i) \prod_{j=1}^{d} p\left(x_{j} \mid y=i\right)}{\sum_{u=1}^{k} p(y=u) \prod_{j=1}^{d} p\left(x_{j} \mid y=u\right)}
$$

Remember: we can calculate the probabilities from the full joint

