CS 2750 Machine Learning Lecture 16

Bayesian belief networks II

Milos Hauskrecht <u>milos@pitt.edu</u> 5329 Sennott Square

Modeling complex distributions

Question: How to model and learn complex multivariate distributions $\hat{p}(\mathbf{X})$ with a large number of variables?

Example: modeling of disease – symptoms relations

- Disease: pneumonia
- Patient symptoms (findings, lab tests):
 - Fever, Cough, Paleness, WBC (white blood cells) count, Chest pain, etc.
- Model of the full joint distribution: P(Pneumonia, Fever, Cough, Paleness, WBC, Chest pain)

One probability per assignment of values to variables: P(Pneumonia =T, Fever =T, Cought=T, WBC=High, Chest pain=T)

BBNs examples

• In various areas:

- Intelligent user interfaces (Microsoft)
- Troubleshooting, diagnosis of a technical device
- Medical diagnosis:
 - Pathfinder CPSC
 - Munin
 - QMR-DT
- Collaborative filtering
- Military applications
- Insurance, credit applications

