CS 2750 Machine Learning

 Lecture 11b
Support vector machines

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Linear decision boundaries

- What models define linear decision boundaries?

Linear decision boundaries

Linearly separable classes

Linearly separable classes:

There is a hyperplane
$\mathbf{w}^{T} \mathbf{x}+w_{0}=0$
that separates training instances with no error

Learning linearly separable sets

Finding weights for linearly separable classes:

- Linear program (LP) solution
- It finds weights that satisfy the following constraints:

$\mathbf{w}^{T} \mathbf{x}_{i}+w_{0} \geq 0 \quad$ For all i, such that $\quad y_{i}=+1$
$\mathbf{w}^{T} \mathbf{x}_{i}+w_{0} \leq 0 \quad$ For all i, such that $y_{i}=-1$
Together: $\quad y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+w_{0}\right) \geq 0$

Property: if there is a hyperplane separating the examples, the linear program finds the solution

Optimal separating hyperplane

Problem:

- There are multiple hyperplanes that separate the data points
- Which one to choose?

Optimal separating hyperplane

Problem:

- There are multiple hyperplanes that separate the data points
- Which one to choose?
- One solution: hyperplane that maximizes the width of the margin

Optimal separating hyperplane

- Problem: multiple hyperplanes that separate the data exists
- Maximum margin choice: maximum distance of $d_{+}+d_{-}$
- where d_{+}is the shortest distance of a positive example from the hyperplane (similarly d_{-}for negative examples)
Note: a margin classifier is a classifier for which we can calculate the distance of each example from the decision boundary

Maximum margin hyperplane

- For the maximum margin hyperplane only examples on the margin matter (only these affect the distances)
- These are called support vectors

Finding maximum margin hyperplanes

- Assume that examples in the training set are $\left(\mathbf{x}_{i}, y_{i}\right)$ such that $y_{i} \in\{+1,-1\}$
- Assume that all data satisfy:

$$
\begin{array}{ccc}
\mathbf{w}^{T} \mathbf{x}_{i}+w_{0} \geq 1 & \text { for } & y_{i}=+1 \\
\mathbf{w}^{T} \mathbf{x}_{i}+w_{0} \leq-1 & \text { for } & y_{i}=-1
\end{array}
$$

- The inequalities can be combined as:

$$
y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+w_{0}\right)-1 \geq 0 \quad \text { for all } \quad i
$$

- Equalities define two hyperplanes:

$$
\mathbf{w}^{T} \mathbf{x}_{i}+w_{0}=1 \quad \mathbf{w}^{T} \mathbf{x}_{i}+w_{0}=-1
$$

Finding the maximum margin hyperplane

- Geometric margin: $\quad \rho_{\mathbf{w}, w_{0}}(\mathbf{x}, y)=y\left(\mathbf{w}^{T} \mathbf{x}+w_{0}\right) /\|\mathbf{w}\|_{L 2}$ - measures the distance of a point \mathbf{x} from the hyperplane \mathbf{w} - normal to the hyperplane $\|. \cdot\|_{L 2}$ - Euclidean norm

For points satisfying:
$y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+w_{0}\right)-1=0$
The distance is $\frac{1}{\|\mathbf{w}\|_{L 2}}$
Width of the margin:

$$
d_{+}+d_{-}=\frac{2}{\|\mathbf{w}\|_{L 2}}
$$

Maximum margin hyperplane

- We want to maximize $d_{+}+d_{-}=\frac{2}{\|\mathbf{w}\|_{L 2}}$
- We do it by minimizing

$$
\|\mathbf{w}\|_{L 2}{ }^{2} / 2=\mathbf{w}^{T} \mathbf{w} / 2
$$

\mathbf{w}, w_{0} - variables

- But we also need to enforce the constraints on data instances: $\quad\left(\mathbf{x}_{i}, y_{i}\right)$

$$
\left\lfloor y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+w_{0}\right)-1\right\rfloor \geq 0
$$

Maximum margin hyperplane

- Solution: Incorporate constraints into the optimization
- Optimization problem (Lagrangian)

$$
\begin{gathered}
J\left(\mathbf{w}, w_{0}, \alpha\right)=\|\mathbf{w}\|^{2} / 2-\sum_{i=1}^{n} \alpha_{i}\left[y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+w_{0}\right)-1\right] \quad \begin{array}{c}
\text { Data instanc } \\
\left(\mathbf{x}_{i}, y_{i}\right)
\end{array} \\
\alpha_{i} \geq 0 \quad \text { - Lagrange multipliers }
\end{gathered}
$$

- Minimize with respect to \mathbf{w}, w_{0} (primal variables)
- Maximize with respect to $\boldsymbol{\alpha}$ (dual variables)

What happens to α :
if $y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+w_{0}\right)-1>0 \Longrightarrow \alpha_{i} \rightarrow 0$ else $\quad \Rightarrow \alpha_{i}>0$

Active constraint

Max margin hyperplane solution

- Set derivatives to 0 (Kuhn-Tucker conditions)

$$
\begin{aligned}
\nabla_{\mathbf{w}} J\left(\mathbf{w}, w_{0}, \alpha\right) & =\mathbf{w}-\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i}=\overline{0} \square \mathbf{w}=\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i} \\
\frac{\partial J\left(\mathbf{w}, w_{0}, \alpha\right)}{\partial w_{0}} & =-\sum_{i=1}^{n} \alpha_{i} y_{i}=0
\end{aligned}
$$

- Now we need to solve for Lagrange parameters (Wolfe dual)

$$
J(\alpha)=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j}\left(\mathbf{x}_{i}{ }^{T} \mathbf{x}_{j}\right) \longleftrightarrow \text { maximize }
$$

Subject to constraints

$$
\alpha_{i} \geq 0 \quad \text { for all } i, \text { and } \quad \sum_{i=1}^{n} \alpha_{i} y_{i}=0
$$

- Quadratic optimization problem: solution $\hat{\alpha}_{i}$ for all i

Maximum margin solution

- The resulting parameter vector $\hat{\mathbf{w}}$ can be expressed as: $\hat{\mathbf{w}}=\sum_{i=1}^{n} \hat{\alpha}_{i} y_{i} \mathbf{x}_{i} \quad \hat{\alpha}_{i}$ is the solution of the optimization
- The parameter w_{0} is obtained from $\hat{\alpha}_{i}\left[y_{i}\left(\hat{\mathbf{w}} \mathbf{x}_{i}+w_{0}\right)-1\right]=0$

Solution properties

- $\hat{\alpha}_{i}=0$ for all points that are
not on the margin
- The decision boundary:

$$
\hat{\mathbf{w}}^{T} \mathbf{x}+w_{0}=\sum_{i \in S V} \hat{\alpha}_{i} y_{i}\left(\mathbf{x}_{i}^{T} \mathbf{x}\right)+w_{0}=0
$$

The decision boundary defined by support vectors only

Support vector machines: solution property

- Decision boundary defined by a set of support vectors SV and their alpha values
- Support vectors $=$ a subset of datapoints in the training data that define the margin

$$
\hat{\mathbf{w}}^{T} \mathbf{x}+w_{0}=\sum_{i \in S V} \hat{\alpha}_{i} y_{i}\left(\mathbf{x}_{i}{ }^{T} \mathbf{x}\right)+w_{0}
$$

- Classification decision for new x :

Lagrange multipliers

$$
\hat{y}=\operatorname{sign}\left[\sum_{i \in S V} \hat{\alpha}_{i} y_{i}\left(\mathbf{x}_{i}{ }^{T} \mathbf{x}\right)+w_{0}\right]
$$

- Note that we do not have to explicitly compute $\hat{\mathbf{w}}$
- This will be important for the nonlinear (kernel) case

Support vector machines

- The decision boundary:

$$
\hat{\mathbf{w}}^{T} \mathbf{x}+w_{0}=\sum_{i \in S V} \hat{\alpha}_{i} y_{i}\left(\mathbf{x}_{i}{ }^{T} \mathbf{x}\right)+w_{0}
$$

- Classification decision:

$$
\hat{y}=\operatorname{sign}\left[\sum_{i \in S V} \hat{\alpha}_{i} y_{i}\left(\mathbf{x}_{i}{ }^{T} \mathbf{x}\right)+w_{0}\right]
$$

Support vector machines: inner product

- Decision on a new \mathbf{x} depends on the inner product between two examples
- The decision boundary:

$$
\hat{\mathbf{w}}^{T} \mathbf{x}+w_{0}=\sum_{i \in S V} \hat{\alpha}_{i} y_{i}\left(\mathbf{x}_{i}^{T} \mathbf{x}+w_{0}\right.
$$

- Classification decision:

$$
\hat{y}=\operatorname{sign}\left[\sum_{i \in S V} \hat{\alpha}_{i} y>\left(\mathbf{x}_{i}{ }^{T} \mathbf{x}+w_{0}\right]\right.
$$

- Similarly, the optimization depends on $\left(\mathbf{x}_{i}{ }^{T} \mathbf{x}_{j}\right)$

$$
J(\alpha)=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j}\left(\mathbf{x}_{i}^{T} \mathbf{x}_{j}\right)
$$

Inner product of two vectors

- The decision boundary for the SVM and its optimization depend on the inner product of two datapoints (vectors):

$$
\mathbf{x}_{i}=\left(\begin{array}{c}
2 \\
5 \\
6
\end{array}\right) \quad \mathbf{x}_{j}=\left(\begin{array}{l}
2 \\
3 \\
1
\end{array}\right)
$$

$$
\left(\mathbf{x}_{i}^{T} \mathbf{x}_{j}\right)=?
$$

Inner product of two vectors

- The decision boundary for the SVM and its optimization depend on the inner product of two data points (vectors):

$$
\begin{gathered}
\mathbf{x}_{i}=\left(\begin{array}{l}
2 \\
5 \\
6
\end{array}\right) \quad \mathbf{x}_{j}=\left(\begin{array}{l}
2 \\
3 \\
1
\end{array}\right) \\
\left(\mathbf{x}_{i}{ }^{T} \mathbf{x}_{j}\right)=\left(\begin{array}{lll}
2 & 5 & 6
\end{array}\right) *\left(\begin{array}{l}
2 \\
3 \\
1
\end{array}\right)=2 * 2+5 * 3+6 * 1=25
\end{gathered}
$$

Inner product of two vectors

- The decision boundary for the SVM and its optimization depend on the inner product of two data points (vectors):

$$
\mathbf{x}_{i}{ }^{T} \mathbf{x}_{j}
$$

- The inner product is equal

$$
\left(\mathbf{x}_{i}^{T} \mathbf{x}_{j}\right)=\left\|\mathbf{x}_{i}\right\| *\left\|\mathbf{x}_{j}\right\| \cos \theta
$$

If the angle in between them is 0 then:

$$
\left(\mathbf{x}_{i}{ }^{T} \mathbf{x}_{j}\right)=\left\|\mathbf{x}_{i}\right\| *\left\|\mathbf{x}_{j}\right\|
$$

If the angle between them is 90 then:

$$
\left(\mathbf{x}_{i}^{T} \mathbf{x}_{j}\right)=0
$$

The inner product measures how similar the two vectors are

