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Evaluation of classifiers

Classification model learning

Learning: 

• Many different ways and objective criteria used to learn the 

classification models. Examples: 

– Mean squared errors  to learn the discriminant functions

– Negative log likelihood (logistic regression)

Evaluation:

• One possibility:  Use the same error criteria as used during the 

learning (apply to train & test data). Problems: 

– May work for discriminative models 

– Harder to interpret for humans.  

• Question:  how to more naturally evaluate the classifier 

performance?
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Evaluation of classification models

For any data set we use to test the classification model on we can 

build a confusion matrix:

– Counts of examples with:

– class label          that are classified with a label
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Evaluation of classification models

Confusion matrix entries are often normalized with respect to 

the number of examples N to get proportions of the 

different agreements and disagreements among predicted 

and target values 
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Basic evaluation statistics

Basic statistics calculated from the confusion matrix: 

Classification Accuracy = 194/231
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Basic evaluation statistics

Basic statistics calculated from the confusion matrix: 

Classification Accuracy = 194/231

Misclassificion Error = 37/231 = 1 - Accuracy
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Evaluation for binary classification

Entries in the confusion matrix for binary classification have 

names: 
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TP:  True positive (hit)

FP: False positive (false alarm)

TN: True negative (correct rejection)

FN: False negative (a miss)
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Additional statistics

• Sensitivity (recall)

• Specificity

• Positive predictive value (precision)

• Negative predictive value
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Binary classification: additional statistics

Confusion matrix: 

Row and column quantities:

– Sensitivity (SENS)

– Specificity (SPEC)

– Positive predictive value (PPV)

– Negative predictive value (NPV)

F1 score:

harmonic mean of SENS and PPV 
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Binary classification models

Often project data points to one dimensional space:

Defined for example by:  wTx+w0 or p(y=1|x,w)

00 wT
xw Normal or 

direction of a plane

0wT xw
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Binary classification models

Often project data points to one dimensional space:

Defined for example by:  wTx+w0 or p(y=1|x,w)

00 wT
xw Normal or 

direction of a plane

0wT xw
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Binary classification models

Often project data points to one dimensional space:

Defined for example by:  wTx+w0 or p(y=1|x,w)

00 wT
xw Normal or 

direction of a plane

0wT xw
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Question: how good is the 

model with parameters w in 

terms of class discriminability 

at different decision thresholds?
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Receiver Operating Characteristic (ROC)

• Probabilities:

– SENS

– SPEC
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Receiver Operating Characteristic (ROC)

• ROC curve plots :
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ROC curve
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Receiver operating characteristic

• ROC 

– shows the discriminability between the two classes under 

different thresholds representing different decision biases

• Decision bias 

– can be changed using the different loss function

• Quality of a classification model:

– Area under the ROC

– Best value 1, worst (no discriminability): 0.5


