CS 2750 Machine Learning

Lecture 7

Density estimation III

Milos Hauskrecht
milos@pitt.edu
5329 Sennott Square

Distribution models for random variables
Distribution models covered so far:

- Bernoulli distribution
- Model for binary random variables

$$
P(x \mid \theta)=\theta^{x}(1-\theta)^{(1-x)}
$$

- Binomial distribution
- Model for order independent sets of binary outcomes

$$
P\left(N_{1} \mid N, \theta\right)=\binom{N}{N_{1}} \theta^{N_{1}}(1-\theta)^{N-N_{1}}
$$

- Multinomial distribution
- Model for order independent sets of k-nary outcomes

$$
P\left(N_{1}, N_{2}, \ldots N_{k} \mid \boldsymbol{\theta}, \xi\right)=\frac{N!}{N_{1}!N_{2}!\ldots N_{k}!} \theta_{1}^{N_{1}} \theta_{2}^{N_{2}} \ldots \theta_{k}^{N_{k}}
$$

Distribution models for random variables

Models for other types of random variables:

- Gaussian distribution
- Models of real-valued random variable
- Gamma distribution:
- Models of random variables for positive real numbers
- Exponential distribution
- Models of random variables for positive real numbers
- Poisson distribution
- Models of random variables for nonnegative integers

Conjugate choices of priors for some these distributions:

- Exponential - Gamma
- Poisson - Inverse Gamma
- Gaussian - Gaussian (mean) and Wishart (covariance)

Gaussian (normal) distribution

- Gaussian: $\quad \mathrm{x} \sim \mathrm{N}(\mu, \sigma)$
- Parameters: μ - mean
σ - standard deviation
- Density function:

$$
p(x \mid \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right]
$$

- Example:

$$
\mathrm{N}(0,1)
$$

Parameter estimates

- Loglikelihood

$$
l(D, \mu, \sigma)=\log \prod_{i=1}^{n} p\left(x_{i} \mid \mu, \sigma\right)
$$

- ML estimates of the mean and variance:

$$
\hat{\mu}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \quad \hat{\sigma}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\hat{\mu}\right)^{2}
$$

- ML variance estimate is biased

$$
E_{n}\left(\sigma^{2}\right)=E_{n}\left(\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\hat{\mu}\right)^{2}\right)=\frac{n-1}{n} \sigma^{2} \neq \sigma^{2}
$$

- Unbiased estimate:

$$
\hat{\sigma}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\hat{\mu}\right)^{2}
$$

Multivariate normal distribution

- Multivariate normal: $\quad \mathbf{x} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$
- Parameters: $\boldsymbol{\mu}$ - mean

$$
\Sigma \text {-covariance matrix }
$$

- Density function:

$$
p(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})=\frac{1}{(2 \pi)^{d / 2}|\boldsymbol{\Sigma}|^{1 / 2}} \exp \left[-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right]
$$

- Example:

Partitioned Gaussian Distributions

- Multivariate Gaussian:

$$
p(\mathbf{x})=\mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})
$$

- Example:

$$
\mathrm{x}=\binom{\mathbf{x}_{a}}{\mathbf{x}_{b}} \quad \boldsymbol{\mu}=\binom{\boldsymbol{\mu}_{a}}{\boldsymbol{\mu}_{b}} \quad \boldsymbol{\Sigma}=\left(\begin{array}{cc}
\boldsymbol{\Sigma}_{a a} & \boldsymbol{\Sigma}_{a b} \\
\boldsymbol{\Sigma}_{b a} & \boldsymbol{\Sigma}_{b b}
\end{array}\right)
$$

$$
\boldsymbol{\Lambda} \equiv \boldsymbol{\Sigma}^{-1} \quad \boldsymbol{\Lambda}=\left(\begin{array}{ll}
\boldsymbol{\Lambda}_{a a} & \boldsymbol{\Lambda}_{a b} \\
\boldsymbol{\Lambda}_{b a} & \boldsymbol{\Lambda}_{b b}
\end{array}\right)
$$

Precision matrix

- What are the distributions for marginals and conditionals?

$$
p\left(x_{a}\right) \quad p\left(x_{a} \mid x_{b}\right)
$$

Conditionals and Marginals

- Conditional density:

$$
\begin{aligned}
& p\left(\mathbf{x}_{a} \mid \mathbf{x}_{b}\right)=\mathcal{N}\left(\mathbf{x}_{a} \mid \boldsymbol{\mu}_{a \mid b}, \boldsymbol{\Sigma}_{a \mid b}\right) \\
\boldsymbol{\Sigma}_{a \mid b} & =\boldsymbol{\Lambda}_{a a}^{-1}=\boldsymbol{\Sigma}_{a a}-\boldsymbol{\Sigma}_{a b} \boldsymbol{\Sigma}_{b b}^{-1} \boldsymbol{\Sigma}_{b a} \\
\boldsymbol{\mu}_{a \mid b} & =\boldsymbol{\Sigma}_{a \mid b}\left\{\boldsymbol{\Lambda}_{a a} \boldsymbol{\mu}_{a}-\boldsymbol{\Lambda}_{a b}\left(\mathbf{x}_{b}-\boldsymbol{\mu}_{b}\right)\right\} \\
& =\boldsymbol{\mu}_{a}-\boldsymbol{\Lambda}_{a a}^{-1} \boldsymbol{\Lambda}_{a b}\left(\mathbf{x}_{b}-\boldsymbol{\mu}_{b}\right) \\
& =\boldsymbol{\mu}_{a}+\boldsymbol{\Sigma}_{a b} \boldsymbol{\Sigma}_{b b}^{-1}\left(\mathbf{x}_{b}-\boldsymbol{\mu}_{b}\right)
\end{aligned}
$$

- Marginal Density:

$$
\begin{aligned}
p\left(\mathbf{x}_{a}\right) & =\int p\left(\mathbf{x}_{a}, \mathbf{x}_{b}\right) \mathrm{d} \mathbf{x}_{b} \\
& =\mathcal{N}\left(\mathbf{x}_{a} \mid \boldsymbol{\mu}_{a}, \boldsymbol{\Sigma}_{a a}\right)
\end{aligned}
$$

Conditionals and Marginals

Parameter estimates

- Loglikelihood

$$
l(D, \boldsymbol{\mu}, \boldsymbol{\Sigma})=\log \prod_{i=1}^{n} p\left(\mathbf{x}_{i} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}\right)
$$

- ML estimates of the mean and covariances:

$$
\hat{\boldsymbol{\mu}}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} \quad \hat{\boldsymbol{\Sigma}}=\frac{1}{n} \sum_{i=1}^{n}\left(\mathbf{x}_{\mathbf{i}}-\hat{\boldsymbol{\mu}}\right)\left(\mathbf{x}_{\mathbf{i}}-\hat{\boldsymbol{\mu}}\right)^{T}
$$

- Covariance estimate is biased

$$
E_{n}(\hat{\boldsymbol{\Sigma}})=E_{n}\left(\frac{1}{n} \sum_{i=1}^{n}\left(\mathbf{x}_{\mathbf{i}}-\hat{\boldsymbol{\mu}}\right)\left(\mathbf{x}_{\mathbf{i}}-\hat{\boldsymbol{\mu}}\right)^{T}\right)=\frac{n-1}{n} \mathbf{\Sigma} \neq \boldsymbol{\Sigma}
$$

- Unbiased estimate:

$$
\hat{\boldsymbol{\Sigma}}=\frac{1}{n-1} \sum_{i=1}^{n}\left(\mathbf{x}_{\mathbf{i}}-\hat{\boldsymbol{\mu}}\right)\left(\mathbf{x}_{\mathbf{i}}-\hat{\boldsymbol{\mu}}\right)^{T}
$$

Posterior of the mean of a multivariate normal

- Assume a prior on the mean μ that is normally distributed:

$$
p(\boldsymbol{\mu})=N\left(\boldsymbol{\mu}_{p}, \boldsymbol{\Sigma}_{p}\right)
$$

- Then the posterior of μ is normally distributed

$$
\begin{aligned}
p(\boldsymbol{\mu} \mid D) \approx & \left(\prod_{i=1}^{n} \frac{1}{(2 \pi)^{d / 2}|\boldsymbol{\Sigma}|^{1 / 2}} \exp \left[-\frac{1}{2}\left(\mathbf{x}_{i}-\boldsymbol{\mu}\right)^{T} \boldsymbol{\Sigma}^{-1}\left(\mathbf{x}_{i}-\boldsymbol{\mu}\right)\right]\right) \\
& * \frac{1}{(2 \pi)^{d / 2}\left|\boldsymbol{\Sigma}_{p}\right|^{1 / 2}} \exp \left[-\frac{1}{2}\left(\boldsymbol{\mu}-\boldsymbol{\mu}_{p}\right)^{T} \boldsymbol{\Sigma}_{p}^{-1}\left(\boldsymbol{\mu}-\boldsymbol{\mu}_{p}\right)\right] \\
= & \frac{1}{(2 \pi)^{d / 2}\left|\boldsymbol{\Sigma}_{n}\right|^{1 / 2}} \exp \left[-\frac{1}{2}\left(\boldsymbol{\mu}-\boldsymbol{\mu}_{n}\right)^{T} \boldsymbol{\Sigma}_{n}^{-1}\left(\boldsymbol{\mu}-\boldsymbol{\mu}_{n}\right)\right]
\end{aligned}
$$

Posterior of the mean of a multivariate normal

- Then the posterior of $\boldsymbol{\mu}$ is normally distributed

$$
\begin{aligned}
& p(\boldsymbol{\mu} \mid D)=\frac{1}{(2 \pi)^{d / 2}\left|\boldsymbol{\Sigma}_{n}\right|^{1 / 2}} \exp \left[-\frac{1}{2}\left(\boldsymbol{\mu}-\boldsymbol{\mu}_{n}\right)^{T} \boldsymbol{\Sigma}_{n}^{-1}\left(\boldsymbol{\mu}-\boldsymbol{\mu}_{n}\right)\right] \\
& \boldsymbol{\Sigma}_{n}^{-1}=\boldsymbol{\Sigma}_{p}^{-1}+n \boldsymbol{\Sigma}^{-1} \\
& \boldsymbol{\mu}_{n}=\left(\boldsymbol{\Sigma}_{\mathrm{p}}^{-1}+n \boldsymbol{\Sigma}^{-1}\right)^{-1}\left(\boldsymbol{\Sigma}_{\mathrm{p}}^{-1} \boldsymbol{\mu}_{p}+n \boldsymbol{\Sigma}^{-1}\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right)\right) \\
& \boldsymbol{\Sigma}_{n}=\left(\boldsymbol{\Sigma}_{\mathrm{p}}^{-1}+n \boldsymbol{\Sigma}^{-1}\right)^{-1}
\end{aligned}
$$

Other distributions

Gamma distribution:

$$
p(x \mid a, b)=\frac{1}{\Gamma(a) b^{a}} x^{a-1} e^{-\frac{x}{b}} \quad \text { for } \quad x \in[0, \infty]
$$

Exponential distribution:

- A special case of Gamma for $\mathrm{a}=1$

$$
p(x \mid b)=\left(\frac{1}{b}\right) e^{-\frac{x}{b}} \quad \text { for } x \in[0, \infty]
$$

Poisson distribution:

$$
p(x \mid \lambda)=\frac{e^{-\lambda} \lambda^{x}}{x!} \quad \text { for } \quad x \in\{0,1,2, \ldots\}
$$

Gamma distribution

$$
p(\lambda \mid a, b)=\frac{1}{\Gamma(a) b^{a}} \lambda^{a-1} e^{-\frac{\lambda}{b}} \quad \text { for } \lambda \in[0, \infty]
$$

where a is the shape and b is a scale parameter

Exponential distribution

$$
p(x \mid b)=\left(\frac{1}{b}\right) e^{-\frac{x}{b}} \quad \text { for } x \in[0, \infty]
$$

Alternative parameterization: $\quad p(x \mid \lambda)=\lambda e^{-\lambda x}$

$$
\text { where } \quad \lambda=1 / b
$$

Poisson distribution

Poisson distribution:

$$
p(x \mid \lambda)=\frac{e^{-\lambda} \lambda^{x}}{x!} \quad \text { for } \quad x \in\{0,1,2, \ldots\}
$$

Sequential Bayesian parameter estimation

- Sequential Bayesian approach
- Under the iid the estimates of the posterior can be computed incrementally for a sequence of data points

$$
p(\Theta \mid D, \xi)=\frac{p(D \mid \Theta, \xi) p(\Theta \mid \xi)}{\int_{\Theta} p(D \mid \Theta, \xi) p(\Theta \mid \xi) d \Theta}
$$

- If we use a conjugate prior we get back the same posterior
- Assume we split the data D in the last element \mathbf{x} and the rest $p(D \mid \boldsymbol{\Theta})=P(x \mid \boldsymbol{\Theta}) P\left(D_{n-1} \mid \boldsymbol{\Theta}\right)$
- Then:

$$
p(\Theta \mid D, \xi)=\frac{P(x \mid \boldsymbol{\Theta}) P\left(D_{n-1} \mid \boldsymbol{\Theta}\right) p(\Theta \mid \xi)}{\int_{\Theta} P(x \mid \boldsymbol{\Theta}) P\left(D_{n-1} \mid \boldsymbol{\Theta}\right) p(\Theta \mid \xi) d \Theta}
$$

Exponential family

Exponential family:

- all probability mass / density functions that can be written in the exponential normal form

$$
f(\mathbf{x} \mid \boldsymbol{\eta})=\frac{1}{Z(\boldsymbol{\eta})} h(\mathbf{x}) \exp \left[\boldsymbol{\eta}^{T} t(\mathbf{x})\right]
$$

- $\quad \boldsymbol{\eta}$ a vector of natural (or canonical) parameters
- $\quad t(\mathbf{x}) \quad$ a function referred to as a sufficient statistic
- $\quad h(\mathbf{x}) \quad$ a function of x (it is less important)
- $\quad Z(\boldsymbol{\eta}) \quad$ a normalization constant (a partition function)

$$
Z(\boldsymbol{\eta})=\int h(\mathbf{x}) \exp \left\{\boldsymbol{\eta}^{T} t(\mathbf{x})\right\} d \mathbf{x}
$$

- Other common form:

$$
f(\mathbf{x} \mid \boldsymbol{\eta})=h(\mathbf{x}) \exp \left[\boldsymbol{\eta}^{T} t(\mathbf{x})-A(\boldsymbol{\eta})\right] \quad \log Z(\boldsymbol{\eta})=A(\boldsymbol{\eta})
$$

Exponential family: examples

- Bernoulli distribution

$$
\begin{aligned}
p(x \mid \pi)= & \pi^{x}(1-\pi)^{1-x} \\
& =\exp \left\{\log \left(\frac{\pi}{1-\pi}\right) x+\log (1-\pi)\right\} \\
& =\exp \{\log (1-\pi)\} \exp \left\{\log \left(\frac{\pi}{1-\pi}\right) x\right\}
\end{aligned}
$$

- Exponential family

$$
f(\mathbf{x} \mid \boldsymbol{\eta})=\frac{1}{Z(\boldsymbol{\eta})} h(\mathbf{x}) \exp \left[\boldsymbol{\eta}^{T} t(\mathbf{x})\right]
$$

- Parameters

$$
\begin{array}{cl}
\boldsymbol{\eta}=? & t(\mathbf{x})=? \\
Z(\boldsymbol{\eta})=? & h(\mathbf{x})=?
\end{array}
$$

Exponential family: examples

- Bernoulli distribution

$$
\begin{aligned}
p(x \mid \pi)= & \pi^{x}(1-\pi)^{1-x} \\
& =\exp \left\{\log \left(\frac{\pi}{1-\pi}\right) x+\log (1-\pi)\right\} \\
& =\exp \{\log (1-\pi)\} \exp \left\{\log \left(\frac{\pi}{1-\pi}\right) x\right\}
\end{aligned}
$$

- Exponential family

$$
f(\mathbf{x} \mid \boldsymbol{\eta})=\frac{1}{Z(\boldsymbol{\eta})} h(\mathbf{x}) \exp \left[\boldsymbol{\eta}^{T} t(\mathbf{x})\right]
$$

- Parameters

$$
\begin{array}{ll}
\boldsymbol{\eta}=\log \frac{\pi}{1-\pi} \longleftarrow \operatorname{logit~function~} & t(\mathbf{x})=x \\
Z(\boldsymbol{\eta})=\frac{1}{1-\pi}=1+e^{\eta} & h(\mathbf{x})=1
\end{array}
$$

Exponential family: examples

- Univariate Gaussian distribution

$$
\begin{aligned}
& p(x \mid \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right] \\
& \quad=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{\mu}{2 \sigma^{2}}-\log \sigma\right) \exp \left\{\frac{\mu}{\sigma^{2}} x-\frac{1}{2 \sigma^{2}} x^{2}\right\}
\end{aligned}
$$

- Exponential family

$$
f(\mathbf{x} \mid \boldsymbol{\eta})=\frac{1}{Z(\boldsymbol{\eta})} h(x) \exp \left[\eta^{T} t(x)\right]
$$

- Parameters

$$
\begin{array}{ll}
\boldsymbol{\eta}=? & t(\mathbf{x})=? \\
Z(\boldsymbol{\eta})=? & h(\mathbf{x})=?
\end{array}
$$

Exponential family: examples

- Univariate Gaussian distribution

$$
\begin{aligned}
& p(x \mid \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right] \\
& \quad=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{\mu^{2}}{2 \sigma^{2}}-\log \sigma\right) \exp \left\{\frac{\mu}{\sigma^{2}} x-\frac{1}{2 \sigma^{2}} x^{2}\right\}
\end{aligned}
$$

- Exponential family

$$
f(\mathbf{x} \mid \boldsymbol{\eta})=\frac{1}{Z(\boldsymbol{\eta})} h(x) \exp \left[\eta^{T} t(x)\right]
$$

- Parameters

$$
\begin{aligned}
& \boldsymbol{\eta}=\left[\begin{array}{c}
\mu / \sigma^{2} \\
-1 / 2 \sigma^{2}
\end{array}\right] \quad t(\mathbf{x})=\left[\begin{array}{c}
x \\
x^{2}
\end{array}\right] \\
& Z(\boldsymbol{\eta})=\exp \left\{\frac{\mu^{2}}{2 \sigma^{2}}+\log \sigma\right\}=\exp \left\{-\frac{\eta_{1}^{2}}{4 \eta_{2}}-\frac{1}{2} \log \left(-2 \eta_{2}\right)\right\} \\
& h(\mathbf{x})=1 / \sqrt{2 \pi}
\end{aligned}
$$

Exponential family

- For iid samples, the likelihood of data is

$$
\begin{array}{r}
P(D \mid \boldsymbol{\eta})=\prod_{i=1}^{n} p\left(\mathbf{x}_{i} \mid \boldsymbol{\eta}\right)=\prod_{i=1}^{n} h\left(\mathbf{x}_{i}\right) \exp \left[\boldsymbol{\eta}^{T} t\left(\mathbf{x}_{i}\right)-A(\boldsymbol{\eta})\right] \\
=\left[\prod_{i=1}^{n} h\left(\mathbf{x}_{i}\right)\right] \exp \left[\sum_{i=1}^{n} \boldsymbol{\eta}^{T} t\left(\mathbf{x}_{i}\right)-A(\boldsymbol{\eta})\right] \\
=\left[\prod_{i=1}^{n} h\left(\mathbf{x}_{i}\right)\right] \exp \left[\mathbf{\eta}^{T}\left(\sum_{i=1}^{n} t\left(\mathbf{x}_{i}\right)\right)-n A(\boldsymbol{\eta})\right]
\end{array}
$$

- Important:
- the dimensionality of the sufficient statistic remains the same with the number of samples

Exponential family

- The log likelihood of data is

$$
\begin{aligned}
l(D, \boldsymbol{\eta}) & =\log \left[\prod_{i=1}^{n} h\left(\mathbf{x}_{i}\right)\right] \exp \left[\boldsymbol{\eta}^{T}\left(\sum_{i=1}^{n} t\left(\mathbf{x}_{i}\right)\right)-n A(\boldsymbol{\eta})\right] \\
& =\log \left[\prod_{i=1}^{n} h\left(\mathbf{x}_{i}\right)\right]+\left[\boldsymbol{\eta}^{T}\left(\sum_{i=1}^{n} t\left(\mathbf{x}_{i}\right)\right)-n A(\boldsymbol{\eta})\right]
\end{aligned}
$$

- Optimizing the loglikelihood

$$
\nabla_{\boldsymbol{\eta}} l(D, \boldsymbol{\eta})=\left(\sum_{i=1}^{n} t\left(\mathbf{x}_{i}\right)\right)-n \nabla_{\boldsymbol{\eta}} A(\boldsymbol{\eta})=\mathbf{0}
$$

- For the ML estimate it must hold

$$
\nabla_{\boldsymbol{\eta}} A(\boldsymbol{\eta})=\frac{1}{n}\left(\sum_{i=1}^{n} t\left(\mathbf{x}_{i}\right)\right)
$$

Exponential family

- Rewritting the gradient:

Exponential family

- Rewritting the gradient:

$$
\begin{aligned}
& \nabla_{\boldsymbol{\eta}} A(\boldsymbol{\eta})=\nabla_{\boldsymbol{\eta}} \log Z(\boldsymbol{\eta})=\nabla_{\boldsymbol{\eta}} \log \int h(\mathbf{x}) \exp \left\{\boldsymbol{\eta}^{T} t(\mathbf{x})\right\} d \mathbf{x} \\
& \nabla_{\boldsymbol{\eta}} A(\boldsymbol{\eta})=\frac{\int t(\mathbf{x}) h(\mathbf{x}) \exp \left\{\boldsymbol{\eta}^{T} t(\mathbf{x})\right\} d \mathbf{x}}{\int h(\mathbf{x}) \exp \left\{\boldsymbol{\eta}^{T} t(\mathbf{x})\right\} d \mathbf{x}} \\
& \nabla_{\boldsymbol{\eta}} A(\boldsymbol{\eta})=\int t(\mathbf{x}) h(\mathbf{x}) \exp \left\{\boldsymbol{\eta}^{T} t(\mathbf{x})-A(\boldsymbol{\eta})\right\} d \mathbf{x} \\
& \nabla_{\boldsymbol{\eta}} A(\boldsymbol{\eta})=E(t(\mathbf{x}))
\end{aligned}
$$

- Result: $E(t(\mathbf{x}))=\frac{1}{n}\left(\sum_{i=1}^{n} t\left(\mathbf{x}_{i}\right)\right)$
- For the ML estimate the parameters $\boldsymbol{\eta}$ should be adjusted such that the expectation of the statistic $t(x)$ is equal to the observed sample statistics

Moments of the distribution

- For the exponential family
- The k-th moment of the statistic corresponds to the k-th derivative of $A(\boldsymbol{\eta})$
- If x is a component of $t(x)$ then we get the moments of the distribution by differentiating its corresponding natural parameter
- Example: Bernoulli $p(x \mid \pi)=\exp \left\{\log \left(\frac{\pi}{1-\pi}\right) x+\log (1-\pi)\right\}$
$A(\boldsymbol{\eta})=\log \frac{1}{1-\pi}=\log \left(1+e^{\eta}\right)$
- Derivatives:

$$
\begin{aligned}
& \frac{\partial A(\boldsymbol{\eta})}{\partial \eta}=\frac{\partial}{\partial \eta} \log \left(1+e^{\eta}\right)=\frac{e^{\eta}}{\left(1+e^{\eta}\right)}=\frac{1}{\left(1+e^{-\eta}\right)}=\pi \\
& \frac{\partial A(\boldsymbol{\eta})}{\partial \eta^{2}}=\frac{\partial}{\partial \eta} \frac{1}{\left(1+e^{-\eta}\right)}=\pi(1-\pi)
\end{aligned}
$$

Non-parametric density estimation

Nonparametric Density Estimation

- Parametric distribution models are:
- restricted to specific functional forms, which may not always be suitable;
- Example: modeling a multimodal distribution with a single, unimodal model.

VS

- Nonparametric approaches:
- Do not make any strong assumption about the overall shape of the distribution being modelled.

Nonparametric Methods

Histogram methods:

partition the data space into distinct bins with widths Δ_{i} and count the number of observations, n_{i}, in each bin.

$$
p_{i}=\frac{n_{i}}{N \Delta_{i}}
$$

- Often, the same width is used for all bins, $\Delta_{i}=\Delta$.
- Δ acts as a smoothing
 parameter.
- Binning does not work well in the in a d-dimensional space,

Nonparametric Methods

- Binning does not work well in the in a d-dimensional space,
- M bins in each dimension will require M^{d} bins!
- Solution:
- Build the estimates of $\mathrm{p}(\mathbf{x})$ by considering the data points in D and how similar (or close) they are to \mathbf{x}
- Example: Parzen window
- As if we build a bin dynamically for \mathbf{x} for which we need $p(\mathbf{x})$

Nonparametric Methods

- Assume observations drawn from a density $\mathrm{p}(\mathrm{x})$ and consider a small region R containing x such that

$$
P=\int_{R} p(x) d x
$$

R

- The probability that K out of N observations lie inside R is $\operatorname{Bin}(K, N, P)$ and if N is large $K \cong N P$

If the volume of R, V, is sufficiently small, $\mathrm{p}(\mathrm{x})$ is approximately constant over R and

Thus

$$
p(x)=\frac{P}{V}
$$

Putting things together we get:

$$
p(x)=\frac{K}{N V}
$$

Nonparametric methods: kernel methods

Solution 1: Estimate the probability for \mathbf{x} based on the fixed volume \mathbf{V} built around \mathbf{x}

$$
p(x)=\frac{K}{N V}
$$

- Fix V, estimate K from the data

Example: Parzen window

Nonparametric methods: kernel methods

Kernel Density Estimation:

- Parzen window: Let R be a hypercube centred on \mathbf{X} that defines the kernel function:

$$
k\left(\frac{x-x_{n}}{h}\right)=\begin{array}{cc}
1 & \left|\left(x_{i}-x_{n i}\right)\right| / h \leq 1 / 2 \\
0 & \text { otherwise }
\end{array} \quad i=1, \ldots D
$$

-It follows that

$$
K=\sum_{n=1}^{N} k\left(\frac{x-x_{n}}{h}\right)
$$

- and hence

$$
p(x)=\frac{K}{N V}=\frac{1}{N h^{D}} \sum_{n=1}^{N} k\left(\frac{x-x_{n}}{h}\right)
$$

Nonparametric Methods: smooth kernels

To avoid discontinuities in $p(x)$ because of sharp boundaries we can use a smooth kernel, e.g. a Gaussian

$$
p(\mathbf{x})=\frac{1}{N} \sum_{n=1}^{N} \frac{1}{\left(2 \pi h^{2}\right)^{D / 2}} \exp \left[-\frac{\left\|\mathbf{x}-\mathbf{x}_{n}\right\|}{2 h^{2}}\right]
$$

- Any kernel such that

$$
\begin{aligned}
& k(\mathbf{u}) \geq 0 \\
& \int k(\mathbf{u}) d \mathbf{u}=1
\end{aligned}
$$

- will work.

Nonparametric Methods: kNN estimation

Solution 2: Estimate the probability for \mathbf{x} based on a fixed count \mathbf{K} for a variable volume \mathbf{V} built around \mathbf{x}
fix K, estimate V from the data
Nearest Neighbour Density Estimation:
Consider a hyper-sphere centred on X and let it grow to a volume, V^{*}, that includes K of the given N data points.
Then

$$
p(\mathrm{x}) \simeq \frac{K}{N V^{\star}}
$$

Nonparametric vs Parametric Methods

Nonparametric models:

- More flexibility - no density model is needed
- But require storing the entire dataset
- and the computation is performed with all data examples.

Parametric models:

- Once fitted, only parameters need to be stored
- They are much more efficient in terms of computation
- But the model needs to be picked in advance

