CS 2750 Machine Learning Lecture 5

Density estimation

Milos Hauskrecht <u>milos@pitt.edu</u> 5329 Sennott Square

Density estimation

Density estimation: is an unsupervised learning problem

• **Goal:** Learn a model that represent the relations among attributes in the data

 $D = \{D_1, D_2, ..., D_n\}$

Data: $D_i = \mathbf{x}_i$ a vector of attribute values

Attributes:

- modeled by random variables $\mathbf{X} = \{X_1, X_2, \dots, X_d\}$ with
 - Continuous or discrete valued variables

Density estimation: learn an underlying probability distribution model : $p(\mathbf{X}) = p(X_1, X_2, ..., X_d)$ from **D**

Learning via parameter estimation

In this lecture we consider **parametric density estimation Basic settings:**

- A set of random variables $\mathbf{X} = \{X_1, X_2, \dots, X_d\}$
- A model of the distribution over variables in X with parameters Θ : p̂(X | Θ)
- **Data** $D = \{D_1, D_2, ..., D_n\}$
- **Objective:** find parameters Θ such that $p(\mathbf{X}|\Theta)$ fits data D the best
- How to measure the goodness of fit or alternative the error?

The goodness of fit to the data Learning: we do not know the value of the parameter **Our learning goal**: • Find the parameter θ that fits the data D the best? Crierion for the best fit: Maximize the likelihood $P(D \mid \theta) = \prod_{i=1}^{n} \theta^{x_i} (1-\theta)^{(1-x_i)}$ **Intuition**: • more likely are the data given the model, the better is the fit Note: Instead of an error function that measures how bad the data fit the model we have a measure that tells us how well the data fit : $Error(D, \theta) = -P(D \mid \theta)$

