CS 2750 Machine Learning Lecture 5

Density estimation

Milos Hauskrecht
milos@pitt.edu
5329 Sennott Square

Density estimation

Density estimation: is an unsupervised learning problem

- Goal: Learn a model that represent the relations among attributes in the data

$$
D=\left\{D_{1}, D_{2}, \ldots, D_{n}\right\}
$$

Data: $D_{i}=\mathbf{x}_{i} \quad$ a vector of attribute values

Attributes:

- modeled by random variables $\mathbf{X}=\left\{X_{1}, X_{2}, \ldots, X_{d}\right\}$ with
- Continuous or discrete valued variables

Density estimation: learn an underlying probability distribution model : $p(\mathbf{X})=p\left(X_{1}, X_{2}, \ldots, X_{d}\right)$ from \mathbf{D}

Density estimation

Data: $\quad D=\left\{D_{1}, D_{2}, . ., D_{n}\right\}$
$D_{i}=\mathbf{x}_{i} \quad$ a vector of attribute values
Objective: estimate the model of the underlying probability distribution over variables $\mathbf{X}, p(\mathbf{X})$, using examples in D

Density estimation

Standard (iid) assumptions: Samples

- are independent of each other
- come from the same (identical) distribution (fixed $p(\mathbf{X})$)

Density estimation

Types of density estimation:

(1) Parametric

- the distribution is modeled using a set of parameters Θ

$$
\hat{p}(\mathbf{X})=p(\mathbf{X} \mid \Theta)
$$

- Estimation: find parameters Θ fitting the data D
- Example: estimate the mean and covariance of a normal distribution

Density estimation

Types of density estimation:
(2) Non-parametric

- The model of the distribution utilizes all examples in D
- As if all examples were parameters of the distribution
- $\quad \hat{p}(\mathbf{X})=p(\mathbf{X} \mid D)$
- Examples:
histogram

Kernel density estimation

Learning via parameter estimation

In this lecture we consider parametric density estimation
Basic settings:

- A set of random variables $\mathbf{X}=\left\{X_{1}, X_{2}, \ldots, X_{d}\right\}$
- A model of the distribution over variables in X with parameters $\Theta: \hat{p}(\mathbf{X} \mid \Theta)$
- Data $D=\left\{D_{1}, D_{2}, . ., D_{n}\right\}$
- Objective: find parameters Θ such that $p(\mathbf{X} \mid \Theta)$ fits data D the best
- How to measure the goodness of fit or alternative the error?

Bayesian parameter estimation

The ML estimate picks just one value of the parameter

- Problem: if there are two different parameter values that are close in terms of the likelihood, using only one of them may introduce a strong bias, if we use it, for example, for predictions.

Bayesian parameter estimation

- Remedies the limitation of one choice
- Uses the posterior distribution for parameters Θ
- Posterior 'covers' all possible parameter values (and their "weights")
Parameter posterior

$$
p(\Theta \mid D, \xi)=\frac{p(D \mid \Theta, \xi) p(\Theta \mid \xi)}{p(D \mid \xi)} \longleftarrow \text { Parameter prior }
$$

ML Parameter estimation

Model $\hat{p}(\mathbf{X})=p(\mathbf{X} \mid \boldsymbol{\Theta}) \quad$ Data $\quad D=\left\{D_{1}, D_{2}, \ldots, D_{n}\right\}$

- Maximum likelihood (ML) $\max _{\Theta} p(D \mid \Theta, \xi)$
- Find Θ that maximizes likelihood $p(D \mid \Theta, \xi)$

$$
\begin{array}{rlr}
& P(D \mid \Theta, \xi)=P\left(D_{1}, D_{2}, . ., D_{n} \mid \Theta, \xi\right) & \\
= & P\left(D_{1} \mid \Theta, \xi\right) P\left(D_{2} \mid \Theta, \xi\right) \ldots P\left(D_{n} \mid \Theta, \xi\right) & \text { Independen } \\
= & \prod_{i=1}^{n} P\left(D_{i} \mid \Theta, \xi\right) &
\end{array}
$$

$$
\Theta_{M L}=\arg \max _{\Theta} p(D \mid \Theta, \xi)
$$

Log-likelihood

Properties of \log function: ?

Log-likelihood

$$
\Theta^{*}=\arg \max _{\Theta} f(\Theta)=\arg \max _{\Theta} \log f(\Theta)
$$

ML Parameter estimation

Model $\hat{p}(\mathbf{X})=p(\mathbf{X} \mid \boldsymbol{\Theta}) \quad$ Data $\quad D=\left\{D_{1}, D_{2}, . ., D_{n}\right\}$

- Maximum likelihood (ML) $\max _{\Theta} p(D \mid \Theta, \xi)$
- Find Θ that maximizes likelihood $p(D \mid \Theta, \xi)$

$$
\begin{array}{rlr}
& P(D \mid \Theta, \xi)=P\left(D_{1}, D_{2}, . ., D_{n} \mid \Theta, \xi\right) & \\
= & P\left(D_{1} \mid \Theta, \xi\right) P\left(D_{2} \mid \Theta, \xi\right) \ldots P\left(D_{n} \mid \Theta, \xi\right) \quad \text { Independent } \\
= & \prod_{i=1}^{n} P\left(D_{i} \mid \Theta, \xi\right) &
\end{array}
$$

\log-likelihood $\log p(D \mid \Theta, \xi)=\sum_{i=1}^{n} \log P\left(D_{i} \mid \Theta, \xi\right)$
$\Theta_{M L}=\arg \max _{\Theta} p(D \mid \Theta, \xi)=\arg \max _{\Theta} \log p(D \mid \Theta, \xi)$

Bayesian parameter estimation

What does it do?

- Prior and Posterior 'covers' all possible parameter values (and their "weights")
Assume: we have a model of $p(x \mid \Theta)$ with a parameter Θ
- Bayesian parameter estimation:

- ML Estimate

$$
\begin{array}{|c|}
\hline \text { Data }+ \\
p(x \mid \Theta)
\end{array} \quad=
$$

Bayesian parameter estimation

Bayesian parameter estimation

- Uses the posterior distribution for parameters
- Posterior 'covers' all possible parameter values (and their "weights")

Parameter posterior

$$
p(\Theta \mid D, \xi)=\frac{p(D \mid \Theta, \xi) p(\Theta \mid \xi)}{p(D \mid \xi)} \longleftarrow \text { Parameter prior }
$$

- How to use the posterior for modeling $\mathrm{p}(\mathrm{X})$?

$$
\hat{p}(\mathbf{X})=p(\mathbf{X} \mid D)=\int_{\boldsymbol{\Theta}} p(X \mid \boldsymbol{\Theta}) p(\boldsymbol{\Theta} \mid D, \xi) d \boldsymbol{\Theta}
$$

Parameter estimation

Other criteria:

- Maximum a posteriori probability (MAP)
maximize $p(\boldsymbol{\Theta} \mid D, \xi) \quad$ (mode of the posterior)
- Yields: one set of parameters $\boldsymbol{\Theta}_{M A P}$
- Approximation:

$$
\hat{p}(\mathbf{X})=p\left(\mathbf{X} \mid \boldsymbol{\Theta}_{M A P}\right)
$$

- Expected value of the parameter
$\hat{\boldsymbol{\Theta}}=E(\boldsymbol{\Theta}) \quad$ (mean of the posterior)
- Expectation taken with regard to posterior $p(\boldsymbol{\Theta} \mid D, \xi)$
- Yields: one set of parameters
- Approximation:

$$
\hat{p}(\mathbf{X})=p(\mathbf{X} \mid \hat{\boldsymbol{\Theta}})
$$

Parameter estimation. Coin example.

Coin example: we have a coin that can be biased
Outcomes: two possible values -- head or tail
Data: D a sequence of outcomes x_{i} such that

- head $\quad x_{i}=1$
- tail $x_{i}=0$

Model: probability of a head θ
probability of a tail $\quad(1-\theta)$

Objective:

We would like to estimate the probability of a head $\hat{\boldsymbol{\theta}}$ from data

Parameter estimation. Example.

- Assume the unknown and possibly biased coin
- Probability of the head is θ
- Data:

H H T THHTHTHTTTHTHHHHTHHHHT

- Heads: 15
- Tails: 10

What would be your estimate of the probability of a head?

$$
\tilde{\theta}=\text { ? }
$$

Parameter estimation. Example

- Assume the unknown and possibly biased coin
- Probability of the head is θ
- Data:

H H T T H H T H THT T T H T H H H H T H H H H T

- Heads: 15
- Tails: 10

What would be your choice of the probability of a head?
Solution: use frequencies of occurrences to do the estimate

$$
\tilde{\theta}=\frac{15}{25}=0.6
$$

This is the maximum likelihood estimate of the parameter θ

Probability of an outcome

Data: D a sequence of outcomes x_{i} such that

- head $x_{i}=1$
- tail $x_{i}=0$

Model: probability of a head
θ
probability of a tail $(1-\theta)$
Assume: we know the probability θ
Probability of an outcome of a coin flip x_{i}
$P\left(x_{i} \mid \theta\right)=\theta^{x_{i}}(1-\theta)^{\left(1-x_{i}\right)} \longleftarrow \quad$ Bernoulli distribution

- Combines the probability of a head and a tail
- So that x_{i} is going to pick its correct probability
- Gives θ for $x_{i}=1$
- Gives $(1-\theta)$ for $x_{i}=0$

Probability of a sequence of outcomes.

Data: D a sequence of outcomes x_{i} such that

- head $\quad x_{i}=1$
- tail $x_{i}=0$

Model: probability of a head θ probability of a tail $\quad(1-\theta)$
Assume: a sequence of independent coin flips
$D=$ H H T H T H \quad (encoded as $D=110101$)
What is the probability of observing the data sequence \mathbf{D} :

$$
P(D \mid \theta)=?
$$

Probability of a sequence of outcomes.

Data: D a sequence of outcomes x_{i} such that

- head $\quad x_{i}=1$
- tail $\quad x_{i}=0$

Model: probability of a head θ probability of a tail ($1-\theta$)
Assume: a sequence of coin flips $D=$ H H T H T H encoded as $D=110101$
What is the probability of observing a data sequence \mathbf{D} :

$$
P(D \mid \theta)=\theta \theta(1-\theta) \theta(1-\theta) \theta
$$

Probability of a sequence of outcomes.

Data: D a sequence of outcomes x_{i} such that

- head $\quad x_{i}=1$
- tail $x_{i}=0$

Model: probability of a head θ probability of a tail $(1-\theta)$
Assume: a sequence of coin flips $D=$ H Н Т Н Т Н encoded as $D=110101$
What is the probability of observing a data sequence \mathbf{D} :

$$
P(D \mid \theta)=\theta \theta(1-\theta) \theta(1-\theta) \theta
$$

likelihood of the data

Probability of a sequence of outcomes.

Data: D a sequence of outcomes x_{i} such that

- head $\quad x_{i}=1$
- tail $\quad x_{i}=0$

Model: probability of a head probability of a tail ($1-\theta$)
Assume: a sequence of coin flips $D=$ H H T H T H encoded as $D=110101$
What is the probability of observing a data sequence \mathbf{D} :

$$
\begin{aligned}
& P(D \mid \theta)=\theta \theta(1-\theta) \theta(1-\theta) \theta \\
& P(D \mid \theta)=\prod_{i=1}^{6} \theta^{x_{i}}(1-\theta)^{\left(1-x_{i}\right)}
\end{aligned}
$$

Can be rewritten using the Bernoulli distribution:

The goodness of fit to the data

Learning: we do not know the value of the parameter
Our learning goal:

- Find the parameter θ that fits the data D the best?

Crierion for the best fit: Maximize the likelihood

$$
P(D \mid \theta)=\prod_{i=1}^{n} \theta^{x_{i}}(1-\theta)^{\left(1-x_{i}\right)}
$$

Intuition:

- more likely are the data given the model, the better is the fit

Note: Instead of an error function that measures how bad the data fit the model we have a measure that tells us how well the data fit :

$$
\operatorname{Error}(D, \theta)=-P(D \mid \theta)
$$

Maximum likelihood (ML) estimate.

Likelihood of data:

$$
P(D \mid \theta, \xi)=\prod_{i=1}^{n} \theta^{x_{i}}(1-\theta)^{\left(1-x_{i}\right)}
$$

Maximum likelihood estimate

$$
\Theta_{M L}=\arg \max _{\Theta} p(D \mid \Theta, \xi)=\arg \max _{\Theta} \log p(D \mid \Theta, \xi)
$$

Optimize log-likelihood (the same as maximizing likelihood)
$l(D, \theta)=\log P(D \mid \theta, \xi)=\log \prod_{i=1}^{n} \theta_{n}^{x_{i}}(1-\theta)^{\left(1-x_{i}\right)}=$
$\sum_{i=1}^{n} x_{i} \log \theta+\left(1-x_{i}\right) \log (1-\theta)=\log \theta \sum_{i=1}^{i=1} x_{i}+\log (1-\theta) \sum_{i=1}^{n}\left(1-x_{i}\right)$

$$
N_{1} \text { - number of heads seen } \quad N_{2} \text { - number of tails seen }
$$

Maximum likelihood (ML) estimate.

Optimize log-likelihood

$$
l(D, \theta)=N_{1} \log \theta+N_{2} \log (1-\theta)
$$

Set derivative to zero

$$
\frac{\partial l(D, \theta)}{\partial \theta}=\frac{N_{1}}{\theta}-\frac{N_{2}}{(1-\theta)}=0
$$

Solving

$$
\theta=\frac{N_{1}}{N_{1}+N_{2}}
$$

ML Solution: $\quad \theta_{M L}=\frac{N_{1}}{N}=\frac{N_{1}}{N_{1}+N_{2}}$

Maximum likelihood estimate. Example

- Assume the unknown and possibly biased coin
- Probability of the head is θ
- Data:

H H T THHTHTHTTTHTHHHHTHHHHT

- Heads: 15
- Tails: 10

What is the ML estimate of the probability of a head and a tail?

Maximum likelihood estimate. Example

- Assume the unknown and possibly biased coin
- Probability of the head is θ
- Data:

H H T THHTHTHTT THTHHHHTHHHHT

- Heads: 15
- Tails: 10

What is the ML estimate of the probability of head and tail?

Head: $\quad \theta_{M L}=\frac{N_{1}}{N}=\frac{N_{1}}{N_{1}+N_{2}}=\frac{15}{25}=0.6$
Tail: $\quad\left(1-\theta_{M L}\right)=\frac{N_{2}}{N}=\frac{N_{2}}{N_{1}+N_{2}}=\frac{10}{25}=0.4$

