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Density estimation

Density estimation

Density estimation: is an unsupervised learning problem

• Goal: Learn a model that represent the relations among 

attributes in the data

Data: 

Attributes:

• modeled by random variables                                     with

– Continuous or discrete valued variables

Density estimation: learn an underlying probability 

distribution model :                                            from D
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Density estimation

Data: 

Objective: estimate the model of the underlying probability 
distribution over variables       ,           ,  using examples in  D
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Density estimation

Standard (iid) assumptions: Samples

• are independent of each other

• come from the same (identical) distribution (fixed          )
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Independently drawn instances

from the same fixed distribution
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Density estimation

Types of density estimation:

(1) Parametric

• the distribution is modeled using a set of parameters            

• Estimation: find parameters       fitting the data D

• Example: estimate the mean and covariance of a normal 

distribution
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Density estimation

Types of density estimation:

(2) Non-parametric

• The model of the distribution utilizes all examples in D

• As if all examples were parameters of the distribution

•

• Examples:

histogram Kernel density estimation
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Learning via parameter estimation

In this lecture we consider parametric density estimation

Basic settings:

• A set of random variables 

• A model of the distribution over variables in X

with parameters       : 

• Data

• Objective: find parameters        such that                 fits data D  

the best

• How to measure the goodness of fit or alternative the error?  
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Bayesian parameter estimation

The ML estimate picks just one value of the parameter

• Problem: if there are two different parameter values that are 

close in terms of the likelihood, using only one of them  may 

introduce a strong bias, if we use it, for example, for 

predictions.

Bayesian parameter estimation

– Remedies the limitation of one choice

– Uses the posterior distribution for parameters

– Posterior  ‘covers’ all possible  parameter values (and their 

“weights”) 

)|(

)|(),|(
),|(






Dp

pDp
Dp




Data Likelihood

Parameter prior

Parameter posterior





5

ML Parameter estimation

• Maximum likelihood (ML)

– Find         that maximizes likelihood  
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Properties of log function: ?
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Log-likelihood
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ML Parameter estimation

• Maximum likelihood (ML)

– Find         that maximizes likelihood  
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Bayesian parameter estimation

What does it do? 

• Prior and Posterior  ‘covers’ all possible  parameter values 

(and their “weights”)

Assume: we have a model of                 with a parameter

• Bayesian parameter estimation:

• ML Estimate 

Prior on a parameter

+ Data +        =

Posterior on a parameter
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Bayesian parameter estimation

Bayesian  parameter estimation

– Uses the posterior distribution for parameters

– Posterior  ‘covers’ all possible  parameter values (and their 

“weights”) 

• How to use the posterior for modeling p(X)? 
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Parameter estimation

Other criteria:

• Maximum a posteriori probability (MAP)

– Yields: one set of parameters

– Approximation:

• Expected value of the parameter

– Expectation taken with regard to posterior

– Yields: one set of parameters

– Approximation:

maximize ),|( Dp Θ (mode of the posterior)

MAPΘ
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Parameter estimation. Coin example.

Coin example: we have a coin that can be biased

Outcomes: two possible values -- head or tail

Data: D a sequence of outcomes       such that 

• head

• tail

Model:  probability of a head

probability of a tail

Objective:

We would like to estimate the probability of a head

from data
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Parameter estimation.  Example.

• Assume the unknown and possibly biased coin

• Probability of the head is

• Data:

H H T T H H T H T H T T T H T H H H H T H H H H T

– Heads: 15

– Tails: 10

What would be your estimate of the probability of a head ?
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Parameter estimation.  Example

• Assume the unknown and possibly biased coin

• Probability of the head is

• Data:

H H T T H H T H T H T T T H T H H H H T H H H H T

– Heads: 15

– Tails: 10

What would be your choice of the probability of a head ?

Solution: use frequencies of occurrences to do the estimate

This is the maximum likelihood estimate of the parameter
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Probability of an outcome

Data: D a sequence of outcomes       such that 

• head

• tail

Model:  probability of a head

probability of a tail

Assume: we know the probability

Probability of an outcome of a coin flip

– Combines the probability of a head and a tail

– So that        is going to pick its correct probability 

– Gives               for

– Gives               for
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Probability of a sequence of outcomes.

Data: D a sequence of outcomes       such that 

• head

• tail

Model:  probability of a head

probability of a tail

Assume: a sequence of independent coin flips 

D = H H T H T H           (encoded as D= 110101)

What is the probability of observing the data sequence D:

?)|( DP


)1( 

0ix

1ix
ix



11

Probability of a sequence of outcomes.

Data: D a sequence of outcomes       such that 

• head

• tail

Model:  probability of a head

probability of a tail

Assume: a sequence of coin flips D = H H T H T H

encoded as D= 110101

What is the probability of observing a data sequence D:
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Probability of a sequence of outcomes.

Data: D a sequence of outcomes       such that 

• head

• tail

Model:  probability of a head

probability of a tail

Assume: a sequence of coin flips D = H H T H T H

encoded as D= 110101

What is the probability of observing a data sequence D:
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Probability of a sequence of outcomes.

Data: D a sequence of outcomes       such that 

• head

• tail

Model:  probability of a head

probability of a tail

Assume: a sequence of coin flips D = H H T H T H

encoded as D= 110101

What is the probability of observing a data sequence D:

Can be rewritten using the Bernoulli distribution:
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The goodness of fit to the data

Learning: we do not know the value of the parameter

Our learning goal: 

• Find the parameter       that fits the data D the best? 

Crierion for the best fit: Maximize the likelihood

Intuition:

• more likely are the data given the model, the better is the fit

Note:  Instead of an error function that measures how bad the data 

fit the model we have a measure that tells us how well the data 

fit :
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Maximum likelihood (ML) estimate.

Maximum likelihood estimate

1N - number of heads seen 2N - number of tails seen

Likelihood of data:
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Optimize log-likelihood (the same as maximizing likelihood)
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Maximum likelihood (ML) estimate.
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ML Solution:

Optimize log-likelihood
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Maximum likelihood estimate. Example

• Assume the unknown and possibly biased coin

• Probability of the head is

• Data:

H H T T H H T H T H T T T H T H H H H T H H H H T

– Heads: 15

– Tails: 10

What is the ML estimate of the probability of a head and a tail?



Maximum likelihood estimate. Example

• Assume the unknown and possibly biased coin

• Probability of the head is

• Data:

H H T T H H T H T H T T T H T H H H H T H H H H T

– Heads: 15

– Tails: 10

What is the ML estimate of the probability of head and tail ?
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Head:

Tail:


