CS 2750 Machine Learning
Lecture 25

Reinforcement learning 11

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Reinforcement learning

Basics:

Input x Output a
Learner D

A 4

\ 4

A
Reinforcement r

Critic

» Learner interacts with the environment

— Receives input with information about the environment (e.g.
from sensors)

— Makes actions that (may) effect the environment

— Receives a reinforcement signal that provides a feedback on
how well it performed

mailto:milos@cs.pitt.educ

Reinforcement learning

Objective: Learn how to act in the environment in order to
maximize the reinforcement signal

+ The selection of actions should depend on the input
« Apolicy 7:X — A maps inputs to actions

« Goal: find the optimal policy 7 :X — A that gives the best
expected reinforcements

Input x Output a
Learner P >

\ 4

‘ -
Reinforcement r

Critic

Example: learn how to play games (AlphaGo)

Gambling example
« Game: 3 biased coins 1 M2
— The coin to be tossed is selected randomly from the three
coin options. The agent always sees which coin is going to be
played next. The agent makes a bet on either a head or a tail

with a wage of $1. If after the coin toss, the outcome agrees
with the bet, the agent wins $1, otherwise it looses $1

* RL model:
— Input: X —a coin chosen for the next toss,
— Action: A — choice of head or tail the agent bets on,
— Reinforcements: {1, -1}
« Apolicy 7:X—=>A

Examp|e: 7. | Coinl— head
Coin2— tail
Coin3— head

Gambling example

RL model:
« Input: X —a coin chosen for the next toss,

« Action: A —choice of head or tail the agent bets on,
* Reinforcements: {1, -1}

* Apolicy 7. | Coinl—s head

Coin2— tail
Coin3 head

State, action reward trajectories

Step0 Stepl Step2 Step k
state. Coin2 Coinl Coin2 . Coinl
action Tail) Head =) Tail =) Head
reward -1 1 1 1

Gambling example

Learning goal: find the optimal policy

7*: X > A
7 | Coinl— ?
Coin2— ?
Coin3— ?

maximizing future expected rewards
T
E(Zytrt) 0<y<1
t=0

a discount factor = present value of money

RL learning: objective functions

* Objective:
Findapolicy 7 :X —>A
That maximizes some combination of future reinforcements
(rewards) received over time
« Valuation models (quantify how good the mapping is):
— Finite hgrizon models

EQ) Time horizon; T >0
t=0

E(i 7'r) Discount factor: 0<y<1

_ Infinite horizon discounted model
EQ 7'r) Discount factor; 0<y<1
t=0
:
— Average reward li 1 E
tm ZEQ-)

Agent navigation example

« Agent navigation in the maze: ?}fg
— 4 moves in compass directions f.u ‘

— Effects of moves are stochastic —we may wind up in other
than intended location with a non-zero probability

— Objective: learn how to reach the goal state in the shortest
expected time

moves
; !
L ,» []=—
Gl = }

Agent navigation example

« The RL model:
— Input: X —a position of an agent mives
— Output: A —the next move G X
i -]=>
— Reinforcements: R *
» -1 for each move

+ +100 for reaching the goal

- Apolicy: 7: X — A 7. | Position 1 — right

Position 2 — right
Isgsition 25 — left
+ Goal: find the policy maximizing future expected rewards
EQ ') 0<y<1

Agent navigation example

State, action reward trajectories

* policy
21| 22| p31-24| 25 MOVES
7. | Position 1 — right 16| 17 ﬁ\a i&—go 4
Position 2 — right 11 |12 14
é 1{5 - ﬁ -
e 6|7 ?———Q-JO
Position 25 — left V
1 415
Step0 Stepl Step2 Step k
state. Posl Pos2 Pos3 . Pos15

action Right B Right) Up =) Up T

reward -1 -1 -1 -1

RL with immediate rewards

» Expected reward
E(Zytrt) 0<y<1
t=0

» Immediate reward case:
— Reward depends only on x and the action choice

— The action does not affect the environment and hence future
inputs (states) and future rewards:

E(Z;/trt) = E(rp) +EQGr) + E(72r2)+---
t=0
Io, 1, V... Rewards for every step of the game

— Expected one step reward for input x (coin to play next) and
the choice a: R(X, a)

RL with immediate rewards

» Expected reward

EQ»'R) = E(6) + EGR) + EGn) + .

« Optimal strategy:

7*: X > A

7 *(X) =argmax R(Xx, a)

R(X,a): Expected one step reward for input x (coin to play
next) and the choice a

RL with immediate rewards

The optimal choice assumes we know the expected reward
R(x, a)

e Then: x*(x)=argmax R(x,a)

Caveats
+ We do not know the expected reward R(X,a)
— We need to estimate it using R(X, &)from interaction

« We cannot determine the optimal policy if the estimate of
the expected reward is not good

— We need to try also actions that look suboptimal wrt the
current estimates of R(x, a)

Estimating R(x,a)
 Solution 1:
— For each input x try different actions a
— Estimate R(Xx,a) using the average of observed rewards

Nx.a
Z rix,a

x,a i=1

R(x,a) = 1

+ Solution 2: online approximation

» Updates an estimate after performing actiona in x and
observing the reward r*?

R(x,a)" « A—a(i)R(x,a) ™ + (i) r*?

o (i)- alearning rate

RL with immediate rewards

« Atany step in time i during the experiment we have estimates of
expected rewards for each (coin, action) pair:
R(coinl, head)®
R (coind, tail)®
R(coin2, head)®
R(coin2, tail)®
R(coin3, head)®
R(coin3, tail)®

Assume the next coin to play in step (i+1) is coin 2 and we pick
head as our bet. Then we update R(coin2, head)® using the
observed reward and one of the update strategy above, and keep
the reward estimates for the remaining (coin, action) pairs

unchanged, e.9. R(coin2,tail)? = R(coin2, tail)®

Exploration vs. Exploitation

+ Uniform exploration:
— Uses exploration parameter 0<e<1

— Choose the “current” best choice with probability 1—¢&

7 (X) = arg max ﬁ(x, a)

acA

— All other choices are selected with £
a uniform probability | Al-1
Advantages:
« Simple, easy to implement
Disadvantages:

» Exploration more appropriate at the beginning when we do not

Exploration vs. Exploitation

« Boltzman exploration

— The action is chosen randomly but proportionally to its
current expected reward estimate

— Can be tuned with a temperature parameter T to promote
exploration or exploitation

* Probability of choosing action a
exp[F?(x, a)/T])

Palx)= Zexp[ﬁ(x, a')/TJ
« Effect of T: aeh
— For high values of T, p(a|x) is uniformly distributed for
all actions

— For low values of T, p(a| x) of the action with the highest
value of R(Xx,a) is approaching 1

RL with delayed rewards

A more general reinforcement learning model oy
« Agent navigation in the Maze: fﬁg
: o 3°

— 4 moves in compass directions

— Effects of moves are stochastic —we may wind up in other
than intended location with non-zero probability

— Objective: reach the goal state in the shortest time

moves
; !
L ,» []|—
(W[}
AN

Learning with delayed rewards

« Actions, in addition to immediate rewards affect the next state
of the environment and thus indirectly also future rewards

» We need a model to represent environment changes
» The model we use is called Markov decision process (MDP)
— Frequently used in Al, OR, control theory

— Markov assumption: next state depends on the previous
state and action, and not states (actions) in the past

action

reward

Markov decision process

actiong;

@ state,

reward ..

Formal definition: atuple (S,AT,R)

« Asetofstates S (X) locations of a robot

» Asetof actions A move actions

« Transition model SxAxS —[0,1] | where can I get
with different moves

« Reward model SxAxS >R reward/cost
for a transition

10

MDP problem

« We want to find the best policy 7" :S — A
« Value function (V) for a policy, quantifies the goodness of
a policy through, e.g. infinite horizon, discounted model

EQ »'r)
t=0
It: 1. combines future rewards over a trajectory

2. combines rewards for multiple trajectories (through
expectation-based measures)

'* ™, \: ‘1\ g Suatie
\ B 4 N \
¥ f 12
1 ' G
f.—v f'A‘ k'\\
]

Value of a policy for MDP

« Assume afixed policy 7:S—A

« How to compute the value of a policy under infinite horizon
discounted model?

A fixed point equation:

V7 (s) = R(s,7(s)) + 7D P(s'|s, z(s))V " (s")

\ / L s'eS Ve

~
expected discounted reward for following
the policy for the rest of the steps

expected one step
reward for the first action

Var+ UV v=(-U)"r

— For afinite state space— we get a set of linear equations

11

Optimal policy
» The value of the optimal policy

V7(s) = max[R(s,a) +yr> P(s'|s,a)V*(s')}
acA | \ / __s'<S yi
AN

expected one step expected discounted reward for following
reward for the first action the opt. policy for the rest of the steps

Value function mapping form:
V(s) = (HV)(s)
« The optimal policy: 7 :S— A

7" (s) = arg max{R(s, a)+y . P(s'ls, a)V*(s‘)}

aeA s'eS

Computing optimal policy

Dynamic programming: Value iteration:
— computes the optimal value function first then the policy
— iterative approximation
— converges to the optimal value function

Value iteration (&)
initialize VvV :; Vis vector of values for all states

repeat
set V'« V

set V <« HV
until [V'=V[_ <&
output 7z (s) =argmax| R(s,a) +»>_P(s'| s,a)V (S')}

acA s'eS

12

Reinforcement learning of optimal policies

 In the RL framework we do not know the MDP model !!!
» Goal: learn the optimal policy
7' :S—> A
« Two basic approaches:
— Model based learning
* Learn the MDP model (probabilities, rewards) first
+ Solve the MDP afterwards
— Model-free learning
* Learn how to act directly
 No need to learn the parameters of the MDP
— A number of clones of the two in the literature

Model-based learning

We need to learn transition probabilities and rewards
Learning of probabilities
— ML parameter estimates

— Use counts _ N .
P(s'|s,a)=% Ns,a :Z Ns,a,s'

s,a s'eS

Learning rewards
— Similar to learning with immediate rewards

~ s,a . .
R(s,a)=—— 2" or the online solution

Problem: changes in the probabilities and reward
estimates would require us to solve an MDP from scratch !
(after every action and reward seen)

13

Model free learning

» Motivation: value function update (value iteration):

V7 (s) « rggz{R(s, a)+y > P(s's, a)V*(s')}

s'eS

o Let
Q(s,a) =R(s,a)+y > _P(s'|s,a)V(s")

s'eS

« Then v™(s) « max Q(s, a)

+ Note that the update can be defined purely in terms of Q-
functions

Q(s,a) < R(s,a)+y >_P(s'|s,a) max Q(s',a’)

s'eS

Q-learning

» Q-learning uses the Q-value update idea
— But relies on a stochastic (on-line, sample by sample) update
Q(s,a) <~ R(s,a) + 7> P(s'|s,a)max Q(s",a’)
s'eS a

is replaced with

Q(s,a) « 1—a)Q(s, a) +a(r(s, a) + 7 max Q(s', a'))

r(s,a) -reward received from the environment after
performing an action a in state s

- new state reached after action a

S

o - learning rate, a function of N,
- a number of times a has been executed at s

14

Q-function updates in Q-learning

« Atany step in time i during the experiment we have estimates of
Q functions for each (state, action) pair:

Q(position, up)®
Q(positiont, left)®
Q(positiond, right)®
Q(position1, down)®
Q(position2, up)®

« Assume the current state is position 1 and we pick up action to be
performed next. _

« After we observe the reward, we update Q(positionl,up), and
keep the Q function estimates for the remaining (state, action)
pairs unchanged.

Q-learning

The on-line update rule is applied repeatedly during the direct
interaction with an environment

Q-learning

initialize Q(s,a) =0 for all s,a pairs

observe current state s

repeat
select action a ; use some exploration/exploitation schedule
receive reward r
observe next state s’
update Q(s,a) < 1—a)Q(s,a) +a(r +y max Q(s', a'))
setstos’

end repeat

15

Q-learning convergence

The Q-learning is guaranteed to converge to the optimal Q-
values under the following conditions:

» Every state is visited and every action in that state is tried
infinite number of times
— This is assured via exploration/exploitation schedule

» The sequence of learning rates for each Q(s,a) satisfies:

o0 o0

1. > a(i)=wx 2 > a(i)? <o

i=1 i=1

a(n(s,a)) -isthe learning rate for the nth trial of (s,a)

RL with delayed rewards
The optimal choice 7™ (s) =argmax Q(s, a)
« much like what we had for the im?nediate rewards
z*(x) =arg max R(x,a)
RL Learning :
+ Instead of exact values of Q(s,a) we use Q(s, a)

Q(s,a) < (1—&)Q(s,a) + a(r(s, a) + 7 max Q(s", a'))

- Since we have only estimates of Q(s,)

— We need to try also actions that look suboptimal wrt the
current estimates

— Exploration/exploitation strategies
+ Uniform exploration

— = Boltzman-exploration

16

Q-learning speed-ups

The basic Q-learning rule updates may propagate distant
(delayed) rewards very slowly

s A
\A\

Example:)
p ‘: U

‘/A - /‘,

f-»f

Goal: a high reward state
To make the correct decision we need all Q-values for the
current position to be good
Problem:
— in each run we back-propagate values only ‘one-step’ back.
It takes multiple trials to back-propagate values multiple
steps.

Q-learning speed-ups
» Remedy: Backup values for a larger number of steps

Rewards from applying the policy
G =h + s+ 7N+ = D7 Ty,
i=0

1=
We can substitute (immediate rewards with n-step rewards):
n -
A" =2 7'+ 7" max Q, (s a")
i=0
Postpone the update for n steps and update with a longer
trajectory rewards

Quuna(s,8) < Qo (s,) +ala — Q. (s.2))
Problems: - larger variance

- exploration/exploitation switching
- wait n steps to update

17

Q-learning speed-ups

+ One step vs. n-step backup

T TS
=D 1o
L4 G /d\
f-—V"A > A

Problems with n-step backups:

- larger variance
- exploration/exploitation switching
- wait n steps to update

Q-learning speed-ups

« Temporal difference (TD) method
— Remedy of the wait n-steps problem
— Partial back-up after every simulation step
« Similar idea: weather forecast adjustment

4-\‘

. o
4
‘,A 5> /A,

Gl /

b1

y
\

Different versions of this idea has been implemented

18

RL successes

+ Reinforcement learning is relatively simple

— On-line techniques can track non-stationary environments
and adapt to its changes

 Successful applications:
— Deep Mind’s AlphaGo (Alpha Zero)

— TD Gammon — learned to play backgammofn on the
championship level

— Elevator control
— Dynamic channel allocation in mobile telephony
— Robot navigation in the environment

19

