CS 2750 Machine Learning Lecture 23

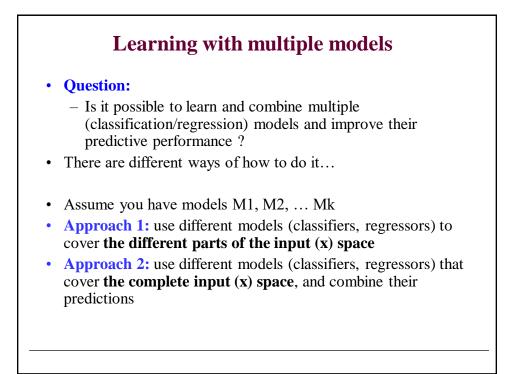
Learning with multiple models Mixture of experts Bagging and Boosting

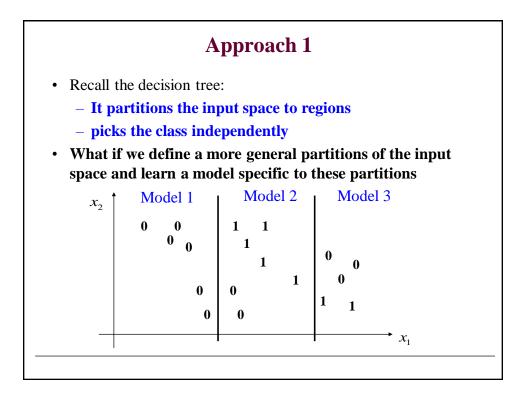
Milos Hauskrecht <u>milos@cs.pitt.edu</u> 5329 Sennott Square

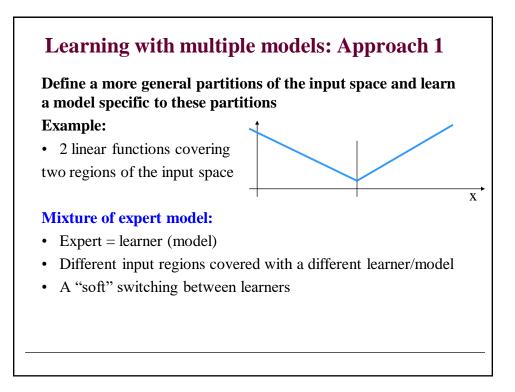
Learning with multiple models

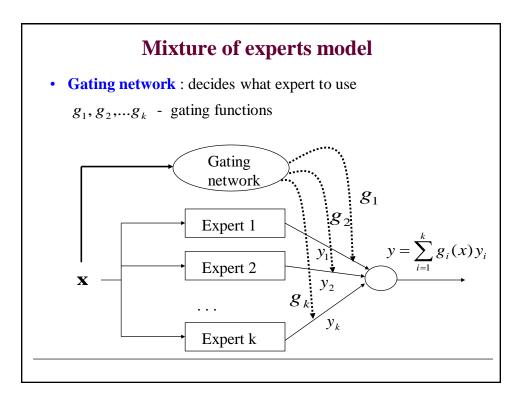
We know how to build different classification or regression models from data

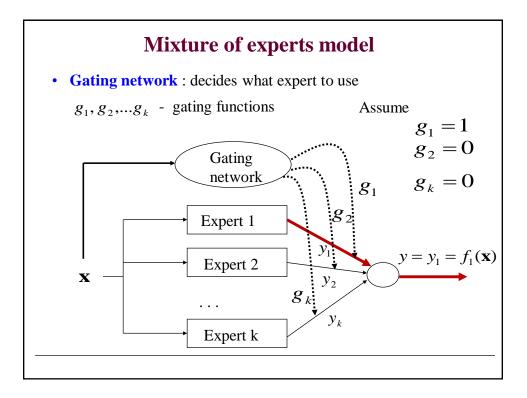
- Question:
 - Is it possible to learn and combine multiple (classification/regression) models and improve their predictive performance ?
- Answer: yes
- There are different ways of how to do it...



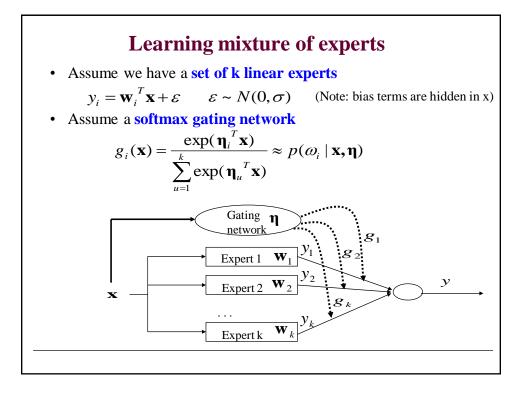




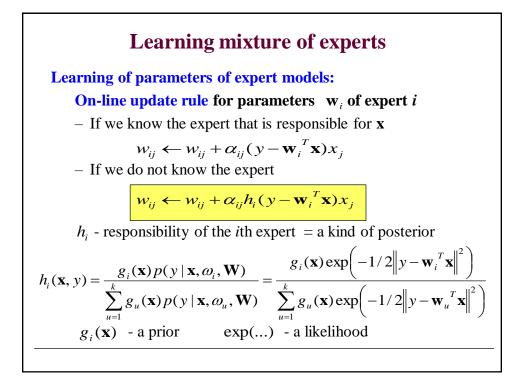


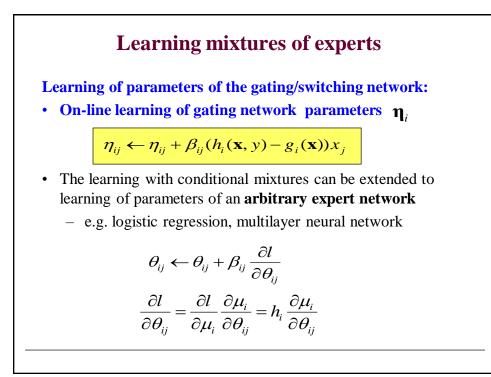


Learning mixture of experts
Learning consists of two tasks:
 Learn the parameters of individual expert networks
– Learn the parameters of the gating (switching) network
• Decides where to make a split
• Assume: gating functions give probabilities
$0 \le g_1(\mathbf{x}), g_2(\mathbf{x}), \dots, g_k(\mathbf{x}) \le 1$ $\sum_{u=1}^{k} g_u(\mathbf{x}) = 1$
$y = \sum_{u=1}^{k} g_u(\mathbf{x}) f_u(\mathbf{x})$
• Based on the probability we partition the space
– partitions belongs to different experts
• How to model the gating network?
– A multi-way classifier model:
• softmax model



Learning mixture of experts • Assume we have a set of linear experts $y_i = \mathbf{w}_i^T \mathbf{x} + \varepsilon \quad \varepsilon \sim N(0, \sigma)$ (Note: bias terms are hidden in x) • Assume a softmax gating network $g_i(\mathbf{x}) = \frac{\exp(\mathbf{\eta}_i^T \mathbf{x})}{\sum\limits_{u=1}^k \exp(\mathbf{\eta}_u^T \mathbf{x})} \approx p(\omega_i | \mathbf{x}, \mathbf{\eta})$ • Likelihood of y (linear regression – assume errors for different experts are normally distributed with the same variance) $P(y | \mathbf{x}, \mathbf{W}, \mathbf{\eta}) = \sum_{i=1}^k P(\omega_i | \mathbf{x}, \mathbf{\eta}) p(y | \mathbf{x}, \omega_i, \mathbf{W})$ $= \sum_{i=1}^k \left[\frac{\exp(\mathbf{\eta}_i^T \mathbf{x})}{\sum\limits_{j=1}^k \exp(\mathbf{\eta}_j^T \mathbf{x})} \right] \left[\frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{\|y - \mathbf{w}_i^T \mathbf{x}_i\|^2}{2\sigma^2} \right) \right]$





Learning with multiple models: Approach 2

• Approach 2: use multiple models (classifiers, regressors) that cover the complete input (x) space and combine their outputs

• Committee machines:

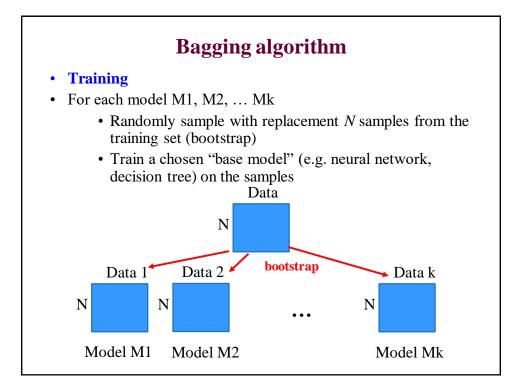
- Combine predictions of all models to produce the output
 - **Regression:** averaging
 - Classification: a majority vote
- Goal: Improve the accuracy of the 'base' model

• Methods:

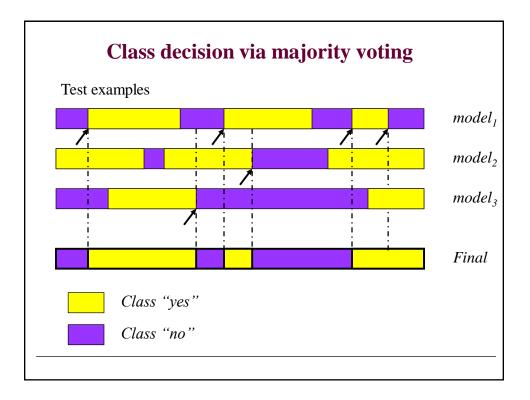
- Bagging (the same base models)
- Boosting (the same base models)
- Stacking (different base model) not covered

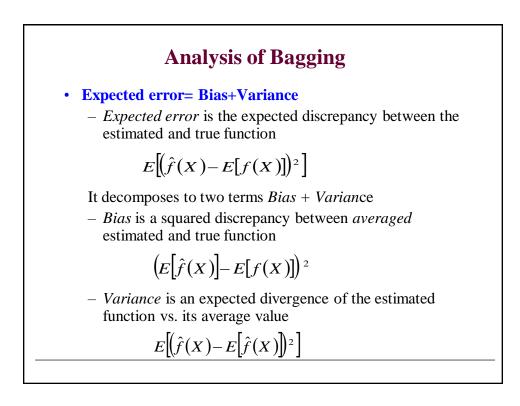
Bagging (Bootstrap Aggregating)

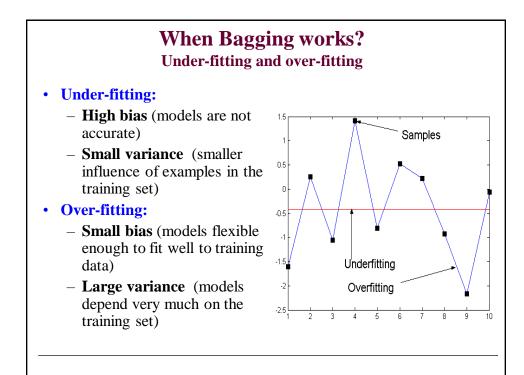
- Given:
 - Training set of N examples
 - A base learning model (e.g. decision tree, neural network, ...)
- Method:
 - Train multiple (k) base models on slightly different datasets
 - Predict (test) by averaging the results of k models
- Goal:
 - Improve the accuracy of one model by using its multiple copies
 - Average of misclassification errors on different data splits gives a better estimate of the predictive ability of a learning method

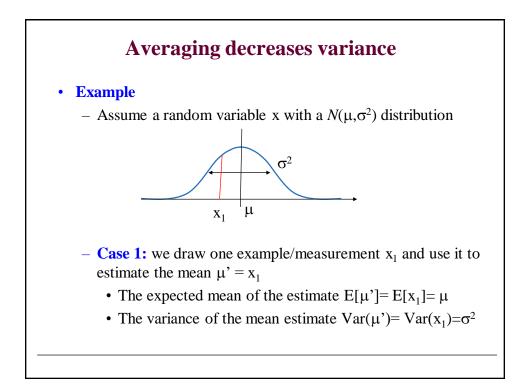


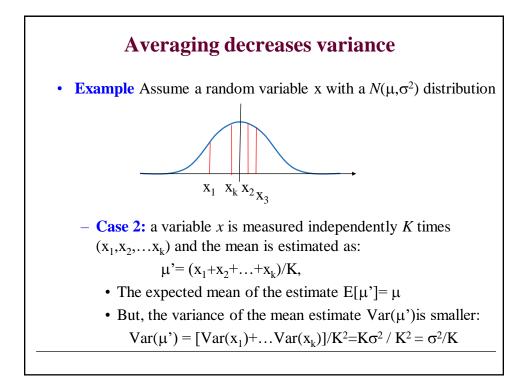
Bagging algorithm		
•	Training	
•	For each model M1, M2, Mk	
	• Randomly sample with replacement <i>N</i> samples from the training set	
	• Train a chosen "base model" (e.g. a neural network, or a decision tree) on the samples	
•	Test	
	 For each test example 	
	• Run all base models M1, M2, Mk	
	• Predict by combining results of all T trained models:	
	- Regression: averaging	
	- Classification: a majority vote	

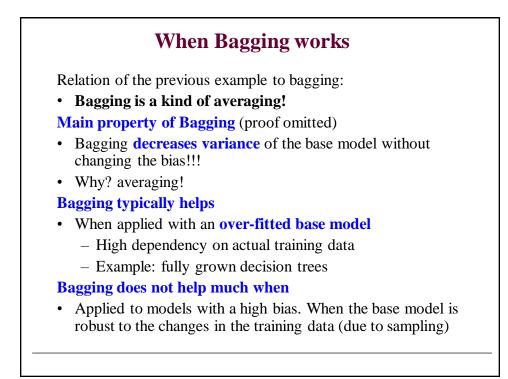












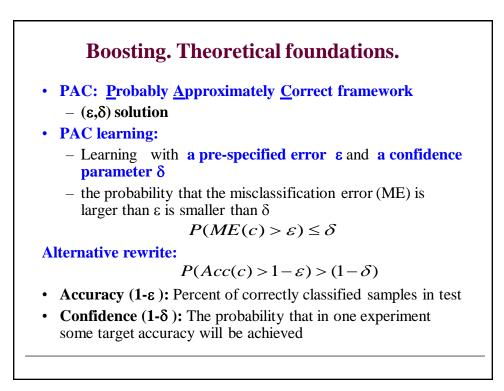
Boosting

• Bagging

- Multiple models covering the complete space, a learner is not biased to any region
- Learners are learned independently

Boosting

- Every learner covers the complete space
- Learners are biased to regions not predicted well by other learners
- <u>Learners are dependent</u>



PAC Learnability

Strong (PAC) learnability:

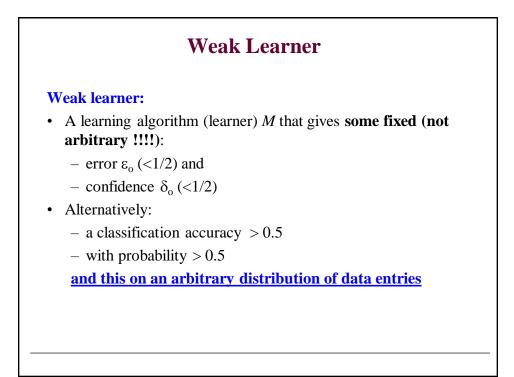
• There exists a learning algorithm that **efficiently** learns the classification with a pre-specified **error and confidence values**

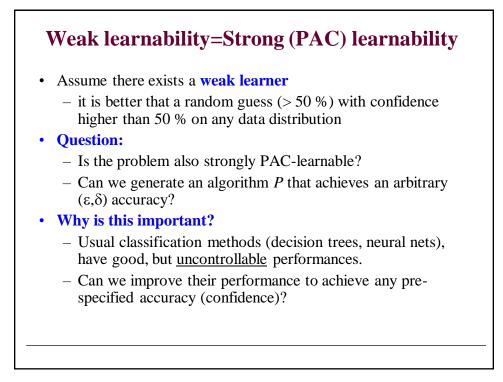
Strong (PAC) learner: A learning algorithm *P* that

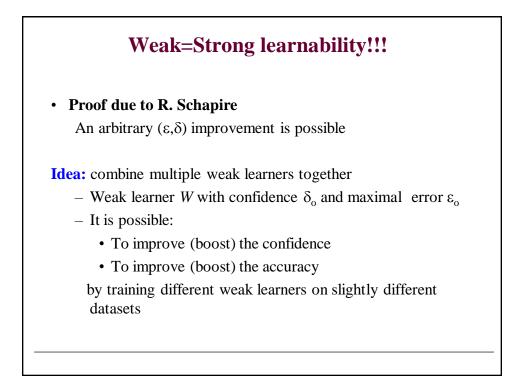
- Given an arbitrary:
 - classification error ε (< 1/2), and
 - <u>confidence δ </u> (<1/2)

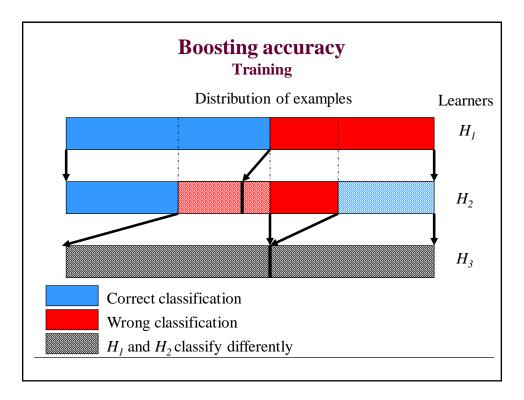
or in other words:

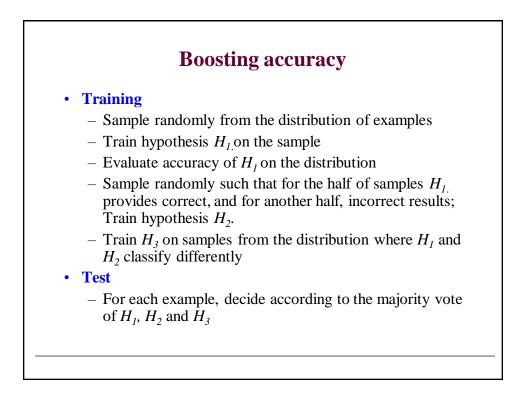
- classification accuracy $>(1-\epsilon)$
- confidence probability $> (1 \delta)$
- Outputs a classifier that satisfies this parameters
- Efficiency: runs in time polynomial in $1/\delta$, $1/\epsilon$
 - Implies: number of samples N is polynomial in $1/\delta$, $1/\epsilon$

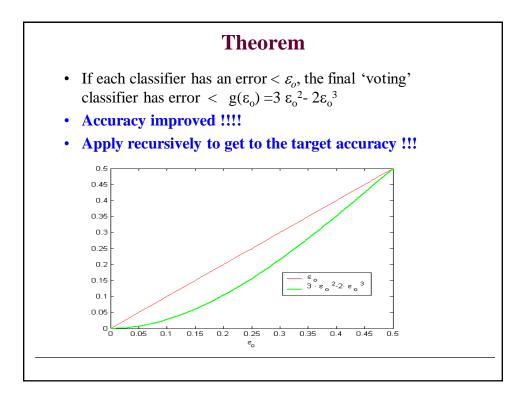


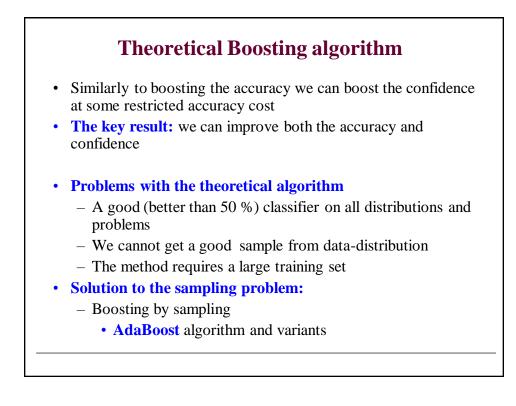


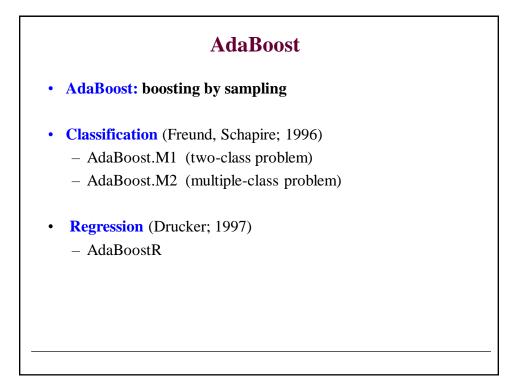


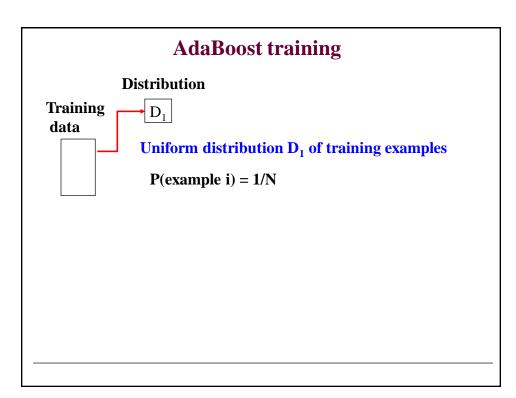


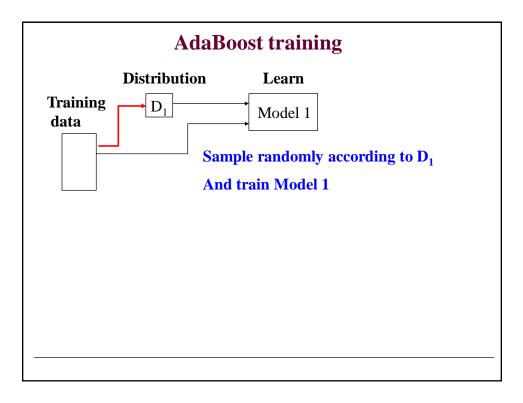


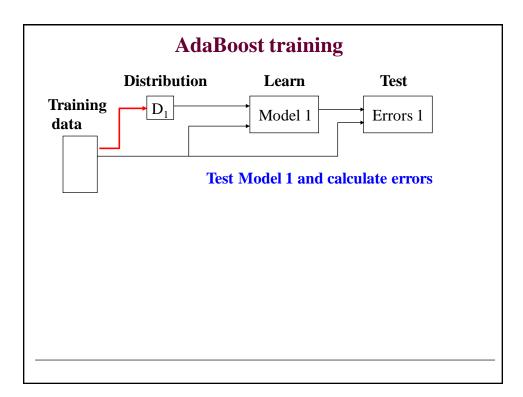


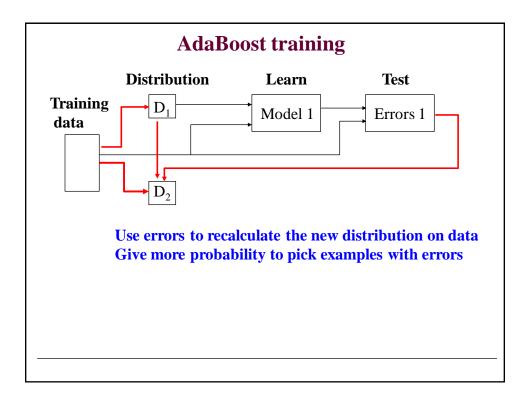


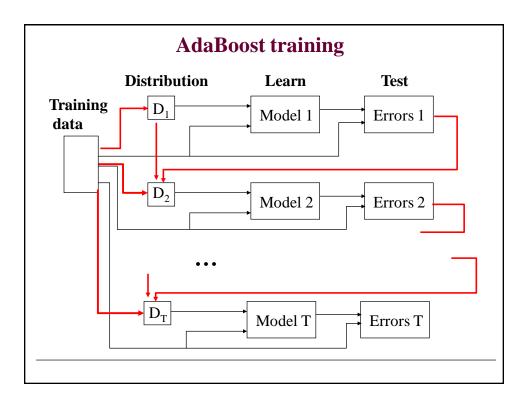












AdaBoost

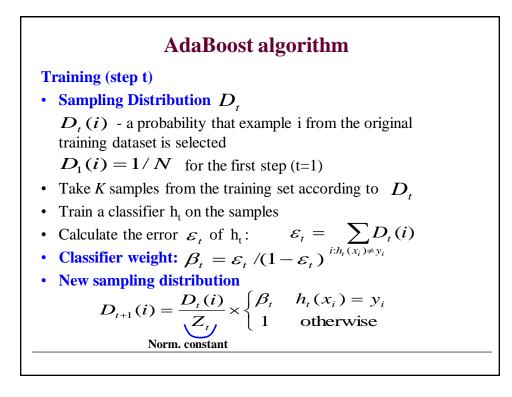
- Given:
 - A training set of *N* examples (attributes + class label pairs)
 - A "base" learning model (e.g. a decision tree, a neural network)

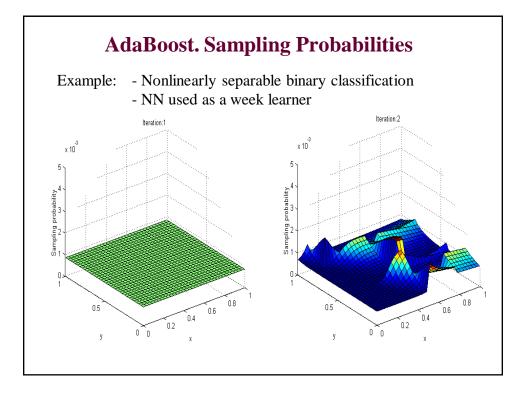
• Training stage:

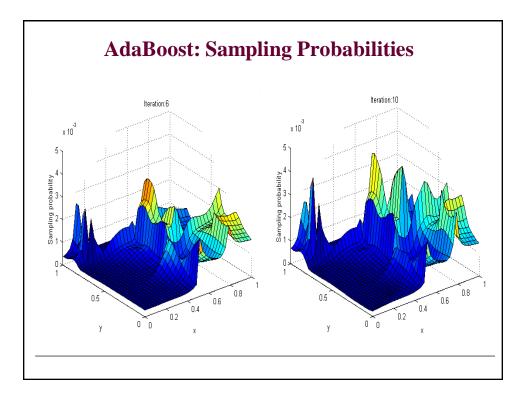
- Train a sequence of T "base" models on T different sampling distributions defined upon the training set (D)
- A sample distribution D_t for building the model *t* is constructed by modifying the sampling distribution D_{t-1} from the (t-1)th step.
 - Examples classified incorrectly in the previous step receive higher weights in the new data (attempts to cover misclassified samples)

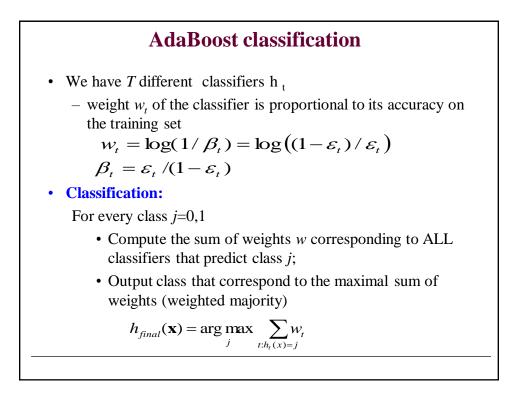
• Application (classification) stage:

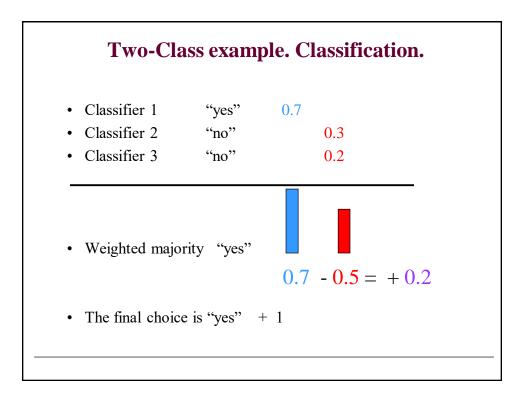
- Classify according to the weighted majority of classifiers











What is boosting doing?

- Each classifier specializes on a particular subset of examples
- Algorithm is concentrating on "more and more difficult" examples
- Boosting can:
 - <u>Reduce variance</u> (the same as Bagging)
 - <u>Eliminate the effect of high bias</u> of the weak learner (unlike Bagging)
- Train versus test errors performance:
 - Train errors can be driven close to 0
 - But test errors do not show overfitting
- Proofs and theoretical explanations in a number of papers

