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Dimensionality reduction. Motivation.

« ML methods are sensitive to the dimensionality d of data

* Question: Is there a lower dimensional representation of the
data that captures well its characteristics?

» Objective of dimensionality reduction:
— Find a lower dimensional representation of data
« Two learning problems:
— Supervised D ={(X;, ¥,), (X5, ¥2)s-, (X1, Yo )}
X, = (X', x2,..,x")

— Unsupervised D ={X,,X;,-,X,}
X, = (X', x?,.., x¢

 Goal: replace x; = (x, xZ,.., X!

with X;' of dimensionality d’<d
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Dimensionality reduction

« Solutions:

— Selection of a smaller subset of inputs (features) from a
large set of inputs; train classifier on the reduced input set

— Combination of high dimensional inputs to a smaller set
of features @, (X); train classifier on new features

selection

”
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combination %

Task-dependent feature selection

Assume: Classification problem:
— X — input vector, y - output

Objective: Find a subset of inputs/features that gives/preserves
most of the output prediction capabilities

Selection approaches:
+ Filtering approaches

— Filter out features with small predictive potential

— Done before classification; typically uses univariate analysis
» Wrapper approaches

— Select features that directly optimize the accuracy of the
multivariate classifier

» Embedded methods
— Feature selection and learning closely tied in the method
— Regularization methods, decision tree methods




Feature selection through filtering

Assume: Classification problem: x — input vector, y - output

How to select the features/inputs?

« Step 1. Foreachinput x; indata calculate Score(x;,y)
reflecting how well X; predicts the output y alone

« Step 2. Pick a subset of inputs with the best scores Score(X;, Y)
(or equivalently eliminate/filter the inputs with the worst scores)

X1 X, X5 X100 y
12 | 33 02 9.3 1
75 | 3.7 |86 2.1 0
13 | 26| 65 7.5 1
Score(x,, y) Score(X,, ) Score(Xyg, Y)

Score(x,.Y)

Feature scoring for classification

 Scores for measuring the differential expression
— T-Test score (Baldi & Long)

+ Based on the test that two groups come from the same
population

* Null hypothesis: is mean of class 0 = mean of class 1

Class 0 Class 1




Feature scoring for classification

Scores for measuring the differential expression

» Fisher Score . . ) 02
Fisher (i) = (4 5 £ Z
o 15O

Class 0 Class 1

« AUROC score: Area under Receiver Operating
Characteristic curve

Feature scoring

» Correlation coefficients
— Measures linear dependences

Cov(X,,Y)
JVar(x)Var(y)

pX,Y) =

« Mutual information
— Measures dependences
— Needs discretized input values

~

(X, Y) ZZZ |5(Xk =j,y=1i)log, ﬁlz)EXk::J)JI’E,}(/;:I)I)




Feature/input dependences

Univariate score assumptions:

* Only one input and its effect ony is incorporated in the score
 Effects of two features on y are considered to be independent

Correlation based feature selection

+ A partial solution to the above problem

Idea: good feature subsets contain features that are highly

correlated with the class but independent of each other

dr,,

M (S)

~ Jd+d(d+Dr,

Assume a set of features S of size d. Then

Average correlation between x and class 'y T,
Average correlation between pairs of xs

l‘XX

Feature selection: low sample size

Problems: Many inputs and low sample size

« if many random features, and not many instances we can learn
from, the features with a good predictive score may arise
simply by chance. The probability of this can be quite large.

x‘M Random
1 X, X3 ﬂm,ooo Y

1.2 33 /0.2
75 75 | 3.7 | 8.6
instances

1.3 26 | 6.5

9.3
21

7.5

1
0

» Techniques to address the problem:

— reduce FDR (False discovery rate) and

— FWER (Family wise error)

»

Many high
Score(x;, y)
arise by chance




Feature selection: wrappers

Wrapper approach:

» The input/feature selection is driven by the prediction accuracy
of the classifier (regressor) we actually want to built

Two problems:
How to judge the quality of a subset of inputs on the model?
How to find the best subset of inputs out of d inputs efficiently?

Feature selection: wrappers

Worapper approach:

« The input/feature selection is driven by the prediction accuracy
of the classifier (regressor) we actually want to built

Two problems:
How to judge the quality of a subset of inputs on the model?
« Internal cross-validation (k-fold cross validation)




Internal cross-validation

+ Split train set: to internal train and test sets

* Internal train set: train different models (defined e.g. on
different subsets of features)

+ Internal test set/s: estimate the generalization error and
select the best model among possible models

* Internal cross-validation (k-fold):
— Divide the train data into m equal partitions (of size N/k)

— Hold out one partition for validation, train the classifiers on
the rest of data

— Repeat such that every partition is held out once

— The estimate of the generalization error of the learner is the
mean of errors of on all partitions

Feature selection: wrappers

Worapper approach:

« The input/feature selection is driven by the prediction accuracy
of the classifier (regressor) we actually want to built

Two problems:

How to judge the quality of a subset of inputs on the model?

« Internal cross-validation (k-fold cross validation)

How to find the best subset of inputs out of d inputs efficiently?

d inputs




Feature selection: wrappers

Wrapper approach:

» The input/feature selection is driven by the prediction accuracy
of the classifier (regressor) we actually want to built

Two problems:

How to judge the quality of a subset of inputs on the model?

* Internal cross-validation (k-fold cross validation)

How to find the best subset of inputs out of d inputs efficiently?

d inputs

For d inputs/features there
are 29 different input subsets
to evaluate and compare

Feature selection: wrappers

How to find the appropriate feature subset S efficiently?
« For d inputs/features there are 29 different feature subsets

« Solution : Greedy search in the space of classifiers
— Option 1: Build the set incrementally

 Add features one by one. Add features that improve the
quality of the model the most

— Option 2: Gradually remove features
» Remove features that effect the accuracy the least

« Model quality:
— Internal cross-validation (k-fold cross validation)




Feature selection: wrappers

Greedy selection

Level1 {x} {x} {x} e oot
M{Xl} M{Xz} M{Xs} e M{Xloo}
selected b bol bk b}
{x,} [ BestsCore
Level 2 {X2 y X]_} {X27 XS} cee {Xza XlOO}

{X2 %100}

M{XZvX:L} M{szxg}
e(M {X2 X100}

selected e(I\/I{xz,xl}) e('\/I{xz,xe'\}}
{X,, X;}| «——— Best score

Level 3 {X,, X3, X, }

{XZ ’ X3’ X100}

Feature selection: wrappers

Stopping criterion:

« Compare:
— The best score at the previous level k-1
— The best score at the current level k

« Stop when there is a decrease in performance on the set of
features at level k




Embedded methods

Feature selection + model learning done jointly
» Examples of embedded methods:

— Regularized models
» Models of higher complexity are explicitly penalized
leading to ‘virtual’ removal of inputs from the model

» Covers:
— Regularized logistic/linear regression

— Support vector machines
» Optimization of margins penalizes nonzero weights

Jln (w, D) = |L(W, D) + R(W)l

| I |
Function Loss function  Regularization
to optimize (fit of the data) penalty

— CART/Decision trees

Unsupervised dimensionality reduction

Is there a lower dimensional representation of the data
that captures well its characteristics?

e Assume:
— We have data D ={x,,X,,..,
X, = (X', x2,.., x*

Assume the dimension d of the data point x is very large
We want to analyze x, there is no class label y

Xy} such that

e Our goal:
— Find a lower dimensional representation of data of

dimension d’ < d
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Principal component analysis (PCA)

Objective: We want to replace a high-dimensional input vector
with a lower dimension vector (obtained by combining inputs)

— Different from the feature subset selection !!!

PCA:

A linear transformation of the d dimensional input x to the M
dimensional feature vectorz suchthat M <d

z=AX

» Many different transformations exists, which one to pick?

» PCA —selects the linear transformation for which the retained
variance is maximal

* Or, equivalently it is the linear transformation for which the
sum of squares reconstruction cost is minimized

PCA: example

11



PCA

Projections to different axis
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PCA

» PCA projection to the 2 dimensional space
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PCA

PCA projection to the 2 dimensional space
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Principal component analysis (PCA)

PCA:

— linear transformation of a d dimensional input x to M
dimensional vector z such that M < d under which the
retained variance is maximal. Remember: no y is needed

Fact:

— A vector x can be represented using a set of orthonormal
vectors u (basis vectors) d
X= > zu,
i=1

— Leads to transformation of coordinates (from x to z using
u’s) u;
T
u
T U=|"?

ug

13



Principal component analysis (PCA)

« Fact: A vector x can be represented using a set of orthonormal

H d
vectors u (basis vectors) Y — Z zu,
i=1
— Leads to transformation of coordinates ul
(from x to z using u’'s) u’
— 2
z, =u, X z=Ux U=
ug
° [ ]
J—
Standard bases: _
(1,0,0); (0,1,0); (0,0,1) New bases: u; , U, , Ug
PCA

* ldea: represent d-dimensional x" with an M-dimensional z"
formed by subset of z; coordinates for the bases defined by U .

U x"
Keep M = X *
components
only X

+ Goal: We want to find:
(1) Basis vectors U and (2) a subset of basis of size M to keep
 This effectively replaces X" with its approximation X"
d _ M n d
X"=>"z"u, wep X"=37"u+ > bu,
i=1 i=1 i=M+1

b, - constant and fixed for all data-points

14



PCA

+ Goal: We want to find: Z,
Basis vectors U and a subset of basis of size M to keep
d
x"=>"z"u, wemp X" —Zz u; + Z:b,uI
i=1 i=M+1
b, - constant and fixed for all data-points
» How to choose the best set of basis vectors?
— We want the subset that gives the best approximation of
data x in the dataset on average (we use least squares fit)
d

Error for dataentry x"  x"—X"= > (z]' —b)u;

Reconstruction error =M +1
1 _ 1N d )
S =—Z‘X"_ =3 Z(Zin_bi)
253 275 i
PCA

Differentiate the error function with regard to all b, and
set equal to O we get:

N N
=iZzi”=uiT>_< )‘(:in”
N n=1 N n=1
» Then we can rewrite:
d
E, =% >0z, > - Z(x (X" —x)T
i=M+1
 The error function is optimized When baS|s vectors satisfy:
2u; = AU, Zﬁ”
i=M+1

The best M basis vectors: discard vectors with d-M smallest
eigenvalues (or keep vectors with M largest eigenvalues)

Eigenvector U; — is called a principal component

15



PCA

» Once eigenvectors u, with largest eigenvalues are identified,
they are used to transform the original d-dimensional data to
M dimensions

Xl
* To find the “true” dimensionality of the datad’ we can just
look at eigenvalues that contribute the most (small eigenvalues
are disregarded)

* Problem: PCA is a linear method. The “true” dimensionality
can be overestimated. There can be non-linear correlations.

» Modifications for nonlinearities: kernel PCA

Dimensionality reduction with neural nets

+ PCAis limited to linear dimensionality reduction
» To do non-linear reductions we can use neural nets

+ Auto-associative (or auto-encoder) network: a neural
network with the same inputs and outputs ( x )

O
X X5 X.

d
» The middle layer corresponds to the reduced dimensions

X

16



Dimensionality reduction with neural nets

* Error criterion:
18, d >
E=22 > (K0 -x")
n=l i=1

» Error measure tries to recover the original data through limited
number of dimensions in the middle layer

* Non-linearities modeled through
intermediate layers between
the middle layer and input/output
+ If no intermediate layers are used
the model replicates PCA
optimization through learning

Latent variable models

» Learning using unsupervised learning
« Dimensionality reduction via inference

Latent variables (s): Dimensionality k

Dimensionality
reduction
via inference

Observed variables x: real valued vars
Dimensionality d
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