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Dimensionality reduction

Feature selection

Dimensionality reduction. Motivation.

• ML methods are sensitive to the dimensionality d of data

• Question: Is there a lower dimensional representation of the 

data that captures well its characteristics?

• Objective of dimensionality reduction:

– Find a lower dimensional representation of data 

• Two learning problems: 

– Supervised

– Unsupervised

• Goal: replace                                    

with         of dimensionality d’< d 
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Dimensionality reduction

• Solutions:

– Selection of a smaller subset of inputs (features) from a 

large set of inputs; train classifier on the reduced input set

– Combination of high dimensional inputs to a smaller set 

of features             ;  train classifier on new features
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Task-dependent feature selection

Assume: Classification problem:  

– x – input vector,  y - output

Objective: Find a subset of inputs/features that gives/preserves 
most of the output prediction capabilities 

Selection approaches: 

• Filtering approaches

– Filter out features with small predictive potential

– Done before classification; typically uses univariate analysis

• Wrapper approaches

– Select features that directly optimize the accuracy of the 
multivariate classifier

• Embedded methods

– Feature selection and learning closely tied in the method

– Regularization methods, decision tree methods 
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Feature selection through filtering

Assume: 

How to select the features/inputs? 

• Step 1 . For each input        in data calculate                         

reflecting how well       predicts the output y alone

• Step 2. Pick a subset of  inputs with the best scores                       

(or equivalently eliminate/filter the inputs with the worst scores)
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Classification problem:  x – input vector,   y - output 
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Feature scoring for classification

• Scores for measuring the differential expression

– T-Test score (Baldi & Long)

• Based on the test that two groups come from the same 
population

• Null hypothesis: is mean of class 0 = mean of class 1

Class 0 Class 1
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Feature scoring for classification

Scores for measuring the differential expression

• Fisher Score

• AUROC score:  Area under Receiver Operating 
Characteristic curve
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Feature scoring

• Correlation coefficients

– Measures linear dependences

• Mutual information 

– Measures dependences

– Needs discretized input values
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Feature/input dependences

Univariate score assumptions:

• Only one input and its effect on y is incorporated in the score  

• Effects of two features on y are considered to be independent

Correlation based feature selection

• A partial solution to the above problem 

• Idea: good feature subsets contain features that are highly 
correlated with the class but independent of each other

• Assume a set of features S of size d. Then 

• Average correlation between x and class y 

• Average correlation between pairs of xs
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Feature selection: low sample size

Problems: Many inputs and low sample size

• if many random features, and not many instances we can learn 
from, the features with a good  predictive score may arise 
simply by chance. The probability of this can be quite large. 

• Techniques to address the problem:

– reduce FDR (False discovery rate) and 

– FWER (Family wise error)

y
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Feature selection: wrappers

Wrapper approach:

• The input/feature selection is driven by the prediction accuracy 

of the classifier (regressor) we actually want to built

Two problems: 

How to judge the quality of a subset of inputs on the model? 

How to find the best subset of inputs out of d inputs efficiently?

Feature selection: wrappers

Wrapper approach:

• The input/feature selection is driven by the prediction accuracy 

of the classifier (regressor) we actually want to built

Two problems: 

How to judge the quality of a subset of inputs on the model? 

• Internal cross-validation (k-fold cross validation)
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Internal cross-validation

• Split train set: to internal train and test sets

• Internal train set: train different models (defined e.g. on 

different subsets of features) 

• Internal test set/s: estimate the generalization error and  

select the best model among possible models 

• Internal cross-validation (k-fold): 

– Divide the train data into m equal partitions (of size N/k)

– Hold out one partition for validation, train the classifiers on 

the rest of data

– Repeat such that every partition is held out once

– The estimate of the generalization error of the learner is the 

mean of errors of on all partitions

Feature selection: wrappers

Wrapper approach:

• The input/feature selection is driven by the prediction accuracy 

of the classifier (regressor) we actually want to built

Two problems: 

How to judge the quality of a subset of inputs on the model? 

• Internal cross-validation (k-fold cross validation)

How to find the best subset of inputs out of d inputs efficiently?

d inputs
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Feature selection: wrappers

Wrapper approach:

• The input/feature selection is driven by the prediction accuracy 

of the classifier (regressor) we actually want to built

Two problems: 

How to judge the quality of a subset of inputs on the model? 

• Internal cross-validation (k-fold cross validation)

How to find the best subset of inputs out of d inputs efficiently?

d inputs

For d inputs/features there 

are 2d different input subsets

to evaluate and compare

Feature selection: wrappers

How to find the appropriate feature subset S efficiently?

• For d inputs/features there are 2d different feature subsets

• Solution : Greedy search in the space of classifiers

– Option 1: Build the set incrementally 

• Add features one by one. Add features that improve  the 

quality of the model the most

– Option 2: Gradually remove features 

• Remove features that effect the accuracy the least

• Model quality: 

– Internal cross-validation (k-fold cross validation)
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Feature selection: wrappers

Greedy selection
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Feature selection: wrappers

Stopping criterion:

• Compare:

– The best score at the previous level k-1

– The best score at the current level k

• Stop when there is a decrease in performance on the set of 

features at level k 
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Embedded methods

Feature selection + model learning done jointly

• Examples of embedded methods:

– Regularized models

• Models of higher complexity are explicitly penalized 

leading to ‘virtual’ removal of inputs from the model

• Covers:

– Regularized logistic/linear regression

– Support vector machines

» Optimization of margins penalizes nonzero weights

– CART/Decision trees
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Function 

to optimize

Loss function

(fit of the data)

Regularization

penalty

Unsupervised dimensionality reduction

• Is there a lower dimensional representation of the data 

that captures well its characteristics?

• Assume:

– We have data                                    such that 

– Assume  the dimension d of the data point x is very large

– We want to analyze x, there is no class label y

• Our goal:

– Find a lower dimensional representation of data of 

dimension d’ < d
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Principal component analysis (PCA)

Objective: We want to replace a high-dimensional input vector 

with a lower dimension vector (obtained by combining inputs)

– Different from the feature subset selection !!!

PCA:

• A linear transformation of the d dimensional input x to the M 

dimensional feature vector z such that                 

• Many different transformations exists, which one to pick? 

• PCA –selects the linear transformation for which the retained 

variance is maximal

• Or, equivalently it is the linear transformation for which the 

sum of squares reconstruction cost is minimized
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PCA: example

-30

-20

-10

0

10

20

30

40

-30
-20

-10
0

10
20

30
40

-40

-20

0

20

40

x

y

z



12

PCA

Projections to different axis

PCA

• PCA projection to the 2 dimensional space
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PCA
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Xprim=0.04x+ 0.06y- 0.99z

Yprim=0.70x+0.70y+0.07z  

97% variance retained    

• PCA projection to the 2 dimensional space

Principal component analysis (PCA)

• PCA:

– linear transformation of a d dimensional input x to M 

dimensional vector z such that               under which the 

retained variance is maximal. Remember: no y is needed

• Fact:

– A vector x can be represented using a set of orthonormal 

vectors u (basis vectors)

– Leads to transformation of coordinates  (from x to z using 

u’s)
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Principal component analysis (PCA)

• Fact:  A vector x can be represented using a set of orthonormal 

vectors u (basis vectors)

– Leads to transformation of coordinates  

(from x to z using u’s)
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PCA

• Idea: represent d-dimensional      with an M-dimensional 

formed by subset of  zi coordinates for the bases defined by U .   

• Goal: We want to find: 

(1) Basis vectors U and (2) a subset of basis of size M to keep 

• This effectively replaces          with its approximation
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PCA

• Goal: We want to find: 

Basis vectors U and a subset of basis of size M to keep

• How to choose the best set of basis vectors?

– We want the subset that gives the best approximation of 

data x in the dataset on average (we use least squares fit)
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PCA

• Differentiate the error function with regard to all         and 
set equal to 0 we get:

• Then we can rewrite:

• The error function is optimized when basis vectors satisfy: 

The best M basis vectors: discard  vectors with d-M smallest 
eigenvalues (or keep vectors with M largest eigenvalues)

Eigenvector         – is called a principal component
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PCA

• Once eigenvectors       with largest eigenvalues are identified, 
they are used  to transform the original d-dimensional data to 
M dimensions

• To find the “true” dimensionality of the data d’ we can just 
look at eigenvalues that contribute the most (small eigenvalues 
are disregarded)

• Problem: PCA is a linear method. The “true” dimensionality 
can be overestimated. There can be non-linear correlations.

• Modifications for nonlinearities: kernel PCA
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Dimensionality reduction with neural nets

• PCA is  limited to linear dimensionality reduction

• To do non-linear reductions we can use neural nets

• Auto-associative (or auto-encoder) network: a neural 

network with the same inputs and outputs ( x )  

• The middle layer corresponds to the reduced dimensions
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Dimensionality reduction with neural nets

• Error criterion:

• Error measure tries to recover the original data through limited 

number of dimensions in the middle layer 

• Non-linearities modeled through 

intermediate layers between 

the middle layer and input/output

• If no intermediate layers are used 

the model replicates PCA 

optimization through learning
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Latent variable models

Observed variables  x:  real valued vars 

Dimensionality d

Latent variables (s):     Dimensionality k

Dimensionality 

reduction

via inference

• Learning using unsupervised learning

• Dimensionality reduction via inference 


