CS 2750 Machine Learning Lecture 2

Designing a learning system

Milos Hauskrecht

milos@pitt.edu

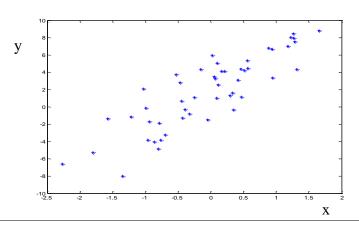
5329 Sennott Square, x4-8845

people.cs.pitt.edu/~milos/courses/cs2750/

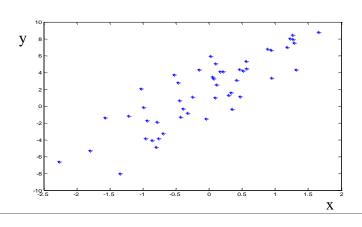
Administrivia

- No homework assignment this week
- Please try to obtain a copy of Matlab: http://technology.pitt.edu/software/matlab-students
- Next week:
 - Matlab tutorial

- Assume we see examples of pairs (\mathbf{x}, y) in D and we want to learn the mapping $f: X \to Y$ to predict y for some future \mathbf{x}
- We get the data *D* what should we do?

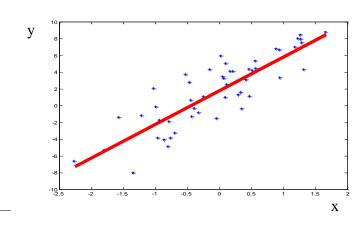


- **Problem:** many possible functions $f: X \to Y$ exists for representing the mapping between \mathbf{x} and \mathbf{y}
- Which one to choose? Many examples still unseen!

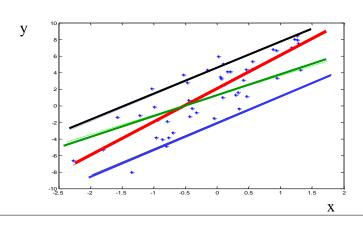


• Solution: make an assumption about the model, say,

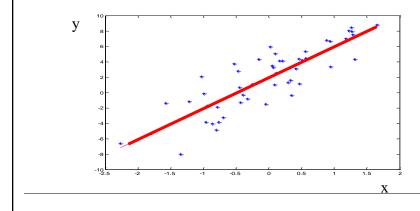
$$f(x) = ax + b$$



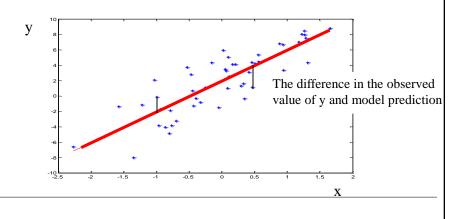
- Choosing a parametric model or a set of models is not enough Still too many functions f(x) = ax + b
 - One for every pair of parameters a, b



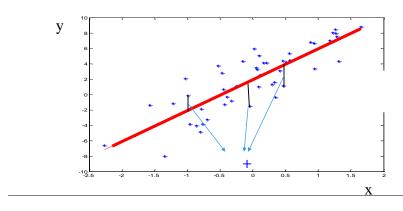
- We want the **best set** of model parameters
 - reduce the misfit between the model **M** and observed data D
 - Or, (in other words) explain the data the best
- How to measure the misfit?



- We want the **best set** of model parameters
 - reduce the misfit between the model ${\bf M}$ and observed data ${\bf D}$
 - Or, (in other words) explain the data the best
- How to measure the misfit?



- We want the **best set** of model parameters
 - reduce the misfit between the model **M** and observed data D
 - Or, (in other words) explain the data the best
- How to measure the misfit?



Learning: first look

- We want the **best set** of model parameters
 - reduce the misfit between the model ${\bf M}$ and observed data ${\bf D}$
 - Or, (in other words) explain the data the best
- How to measure the misfit?

Objective function:

- Error (loss) function: Measures the misfit between D and M
- Examples of error functions:
 - Average Square Error

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

- Average Absolute Error

$$\frac{1}{n}\sum_{i=1}^{n}|y_i-f(x_i)|$$

- · Linear regression
- Minimizes the squared error function for the linear model

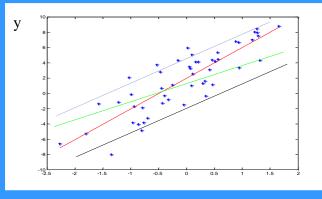
- **1. Data:** $D = \{d_1, d_2, ..., d_n\}$
- 2. Model selection:
 - Select a model or a set of models (with parameters) E.g. y = ax + b
- 3. Choose the objective (error) function
 - Squared error $Error(D, a, b) = \frac{1}{n} \sum_{i=1}^{n} (y_i ax_i b))^2$
- 4. Learning:
- Find the set of parameters (a,b) optimizing the error function

$$(a^*,b^*) = \arg\max_{(a,b)} Error(D,a,b)$$

- 5. Application
 - Apply the learned model to new data $f(x) = a^*x + b^*$
 - E.g. predict ys for the new input x

- **1. Data:** $D = \{d_1, d_2, ..., d_n\}$
- 2. Model ection
 - Selec
 - E.g.
- 3. Choose the
 - Squared e
- 4. Learning:
- Find the set of function
 - (
- 5. Application
 - Apply the learned model to new data $\int (x) = a x + b$
 - E.g. predict ys for the new input \boldsymbol{x}

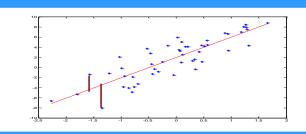
- **1. Data:** $D = \{d_1, d_2, ..., d_n\}$
- 2. Model selection:
 - Select a model or a set of models (with parameters)
 - E.g. y = ax + b
- 3. Choose he
 - Squar
- 4. Learning
- Find the s function
- 5. Applicatio
 - Apply t
 - E.g. pre



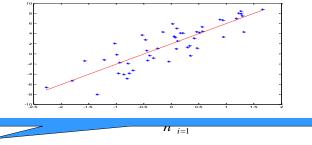
- **1. Data:** $D = \{d_1, d_2, ..., d_n\}$
- 2. Model selection:
 - Select a model or a set of models (with parameters)

E.g.
$$y = ax + b$$

- 3. Choose the objective (error) function
 - Squared error $Error(D, a, b) = \frac{1}{n} \sum_{i=1}^{n} (y_i ax_i b))^2$
- 4. Learning:
- Find the se function
- 5. Applicatio
 - Apply t
 - E.g. pre



- 1. Data: D=
- 2. Model selec
 - Select aE.g.
- 3. Choose the
 - Square



- 4. Learning:
- Find the set of parameters (a,b) optimizing the error function

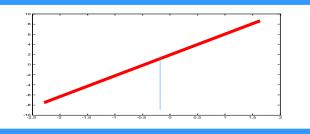
$$(a^*,b^*) = \arg\max_{(a,b)} Error(D,a,b)$$

- 5. Application
 - Apply the learned model to new data $f(x) = a^*x + b^*$
 - E.g. predict ys for the new input x

- **1. Data:** $D = \{d_1, d_2, ..., d_n\}$
- 2. Model selection:
 - Select a model or a set of models (with parameters)

E.g.

- 3. Choose the
 - Squar
- 4. Learning
- Find the function



5. Application

- Apply the learned model to new data $f(x) = a^*x + b^*$
- E.g. predict ys for the new input x

Learning: first look

- **1. Data:** $D = \{d_1, d_2, ..., d_n\}$
- 2. Model selection:
 - Select a model or a set of models (with parameters) E.g. y = ax + b
- 3. Choose the objective (error) function
 - Squared error $Error(D, a, b) = \frac{1}{n} \sum_{i=1}^{n} (y_i ax_i b))^2$
- 4. Learning:
- Find the set of parameters (a,b) optimizing the error function $(a^*,b^*) = \arg \max_{(a,b)} Error(D,a,b)$
- 5. Application
 - Apply the learned model to new data $f(x) = a^*x + b^*$

Looks straightforward, but there are problems

-

Learning: generalization error

We fit the model based on past examples observed in D

Training data: Data used to fit the parameters of the model **Training error:**

 $Error(D, a, b) = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$

Problem: Ultimately we are interested in learning the mapping that performs well on the whole population of examplesTrue (generalization) error (over the whole population):

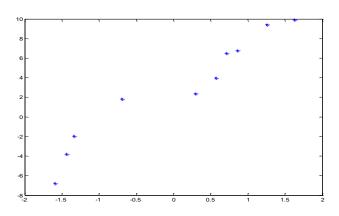
$$Error(a,b) = E_{(x,y)}[(y-f(x))^2]$$
 Mean squared error

Training error tries to approximate the true error !!!!

Does a good training error imply a good generalization error?

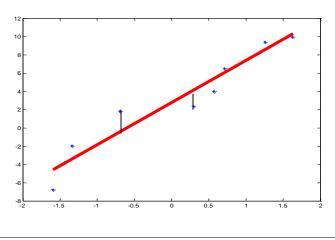
Training vs Generalization error

 Assume we have a set of 10 points and we consider polynomial functions as our possible models



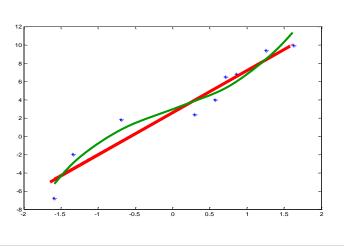
Training vs Generalization error

- Fitting a linear function with the square error
- Error is nonzero



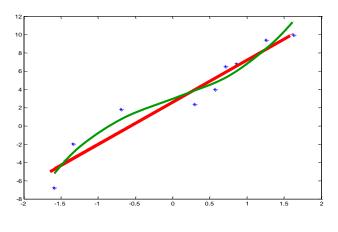
Training vs Generalization error

- Linear vs. cubic polynomial
- .



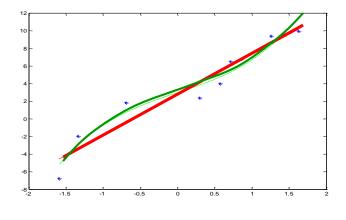
Training vs Generalization error

- Linear vs. cubic polynomial
- Higher order polynomial leads to a better fit, smaller error



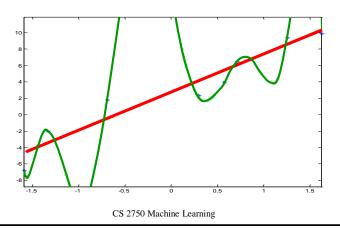
Training vs Generalization error

- Is it always good to minimize the error of the observed data?
- Remember: our goal is to optimize future errors



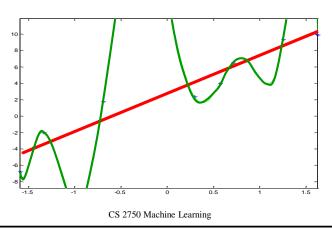
Training vs Generalization error

- For 10 data points, the degree 9 polynomial gives a perfect fit (Lagrange interpolation). Error is zero.
- Is it always good to minimize the training error?



Overfitting

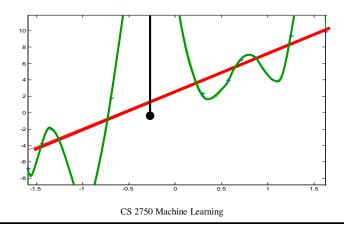
- For 10 data points, degree 9 polynomial gives a perfect fit (Lagrange interpolation). Error is zero.
- Is it always good to minimize the training error? NO!!
- More important: How do we perform on the unseen data?



Overfitting

Situation when the <u>training error is low</u> and <u>the generalization</u> <u>error is high</u>. Causes of the phenomenon:

- Model with a large number of parameters (degrees of freedom)
- Small data size (as compared to the complexity of the model)



How to evaluate the learner's performance?

• **Generalization error** is the true error for the population of examples we would like to optimize

$$E_{(x,y)}[(y-f(x))^2]$$

- But it cannot be computed exactly
- Sample mean only approximates the true mean
- Optimizing the training error can lead to the overfit, i.e. training error may not reflect properly the generalization error

$$\frac{1}{n} \sum_{i=1\dots n} (y_i - f(x_i))^2$$

• So how to test the generalization error?

How to evaluate the learner's performance?

- **Generalization error** is the true error for the population of examples we would like to optimize
- Sample mean only approximates it
- Two ways to assess the generalization error is:
 - Theoretical: Law of Large numbers
 - statistical bounds on the difference between <u>true</u> generalization and sample mean errors
 - Practical: Use a separate data set with m data samples to test the model
 - (Average) test error

$$Error(D_{test}, f) = \frac{1}{m} \sum_{j=1,...m} (y_j - f(x_j))^2$$

Evaluation of the generalization performance

Split available data D into two disjoint sets:

- training set D_{train}
- testing set D_{test}

 Dataset

 Training set

 Testing set

 Optimize
 train error

 Learn (fit)

 Predictive model

 Calculate test error

Also called: Simple holdout method

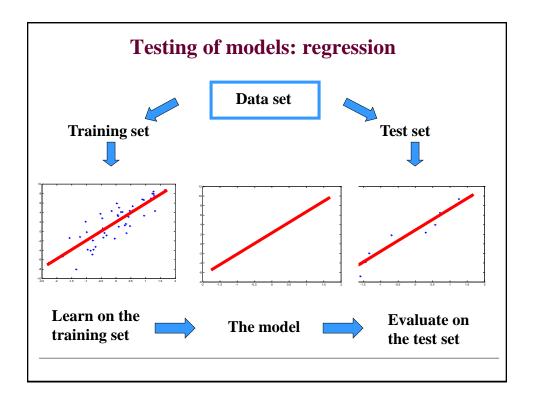
- Typically 2/3 training and 1/3 testing

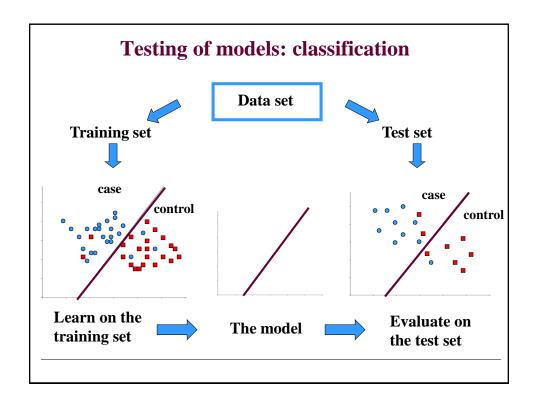
Assessment of model performance

Assessment of the generalization performance of the model:

Basic rule:

- Never ever touch the <u>test data</u> during the learning/model building process
- Test data should be used for the **final evaluation** only





Evaluation measures

Easiest way to evaluate the model:

- Error function used in the optimization is adopted also in the evaluation
- Advantage: may help us to see model overfitting. Simply compare the error on the training and testing data.

Evaluation of the models often considers:

- Other aspects or statistics of the model and its performance
- Moreover the Error function used for the optimization may be a convenient approximation of the quality measure we would really like to optimize

Evaluation measures: classification

Control

0.4

Binary classification:

Prediction

Actual

Case TP FP 0.3 0.1 Control FNTN

0.2

Case

Misclassification error:

$$E = FP + FN$$

Sensitivity:

$$SN = \frac{TP}{TP + FN}$$

Specificity:
$$SP = \frac{TN}{TN + FP}$$

A learning system: basic cycle

- **1. Data:** $D = \{d_1, d_2, ..., d_n\}$
- 2. Model selection:
 - Select a model or a set of models (with parameters)

E.g.
$$y = ax + b$$

- 3. Choose the objective function
 - Squared error

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

- 4. Learning:
- Find the set of parameters optimizing the error function
 - The model and parameters with the smallest error
- 5. Testing/validation:
 - Evaluate on the test data
- 6. Application
 - Apply the learned model to new data

A learning system: basic cycle

- **1. Data:** $D = \{d_1, d_2, ..., d_n\}$
- 2. Model selection:
 - Select
 - E.g.
- 3. Choose th
 - Squar
- 4. Learning:
- Find the s
 - The moder and b

with the smallest error

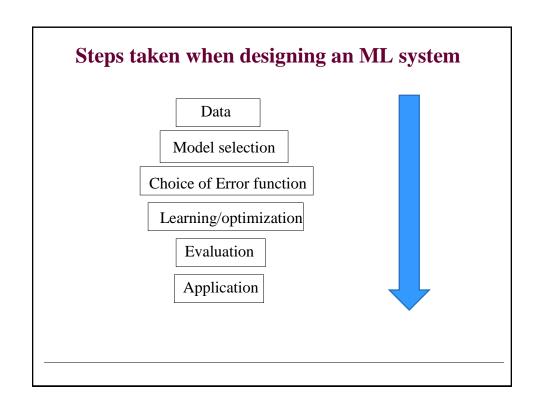
- 5. 5. Testing/validation:
 - Evaluate on the test data
- 6. Application
 - Apply the learned model to new data $f(\mathbf{x})$

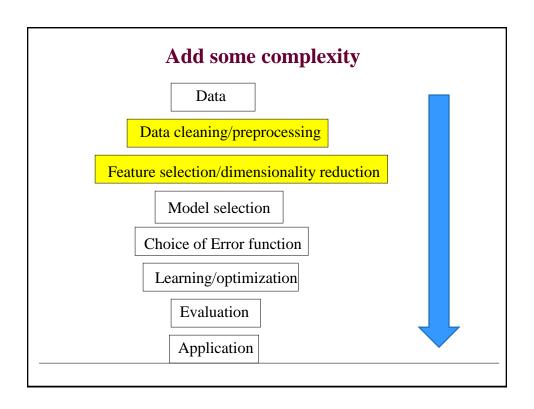
A learning system: basic cycle

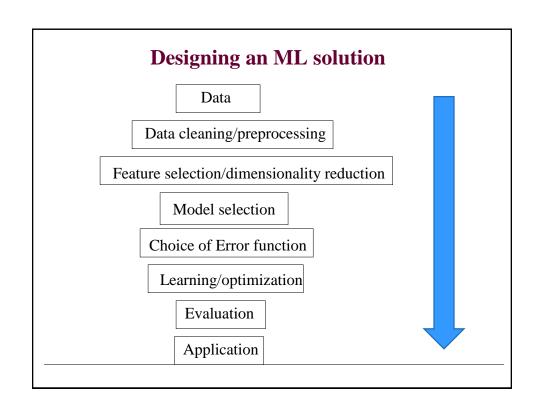
- **1. Data:** $D = \{d_1, d_2, ..., d_n\}$
- 2. Model selection:
 - Select a model or a set of models (with parameters) E.g. y = ax + b
- 3. Choose the objective function
 - Squared error

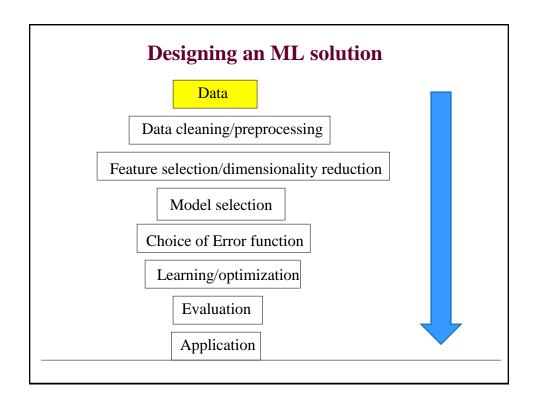
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

- 4. Learning:
- Find the set of parameters optimizing the error function
 - The model and parameters with the smallest error
- 5. Testing/validation:
 - Evaluate on the test data
- 6. Application
 - Apply the learned model to new data $f(\mathbf{x})$









Data source and data biases

- Understand the data source
- Understand the data your models will be applied to
- Watch out for data biases:
 - Make sure the data we make conclusions on are the same as data we used in the analysis
 - It is very easy to derive "unexpected" results when data used for analysis and learning are biased
- Results (conclusions) derived for a biased dataset do not hold in general !!!

Data biases

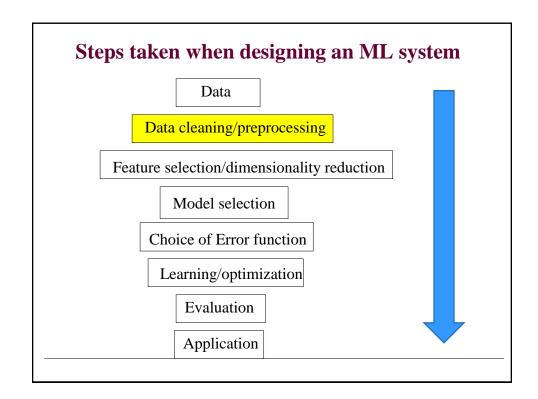
Example: Assume you want to build an ML program for predicting the stock behavior and for choosing your investment strategy

Data extraction:

- pick companies that are traded on the stock market on January 2017
- Go back 30 years and extract all the data for these companies
- Use the data to build an ML model supporting your future investments

Question:

- Would you trust the model?
- Are there any biases in the data?



Data cleaning and preprocessing

Data you receive may not be perfect:

- Cleaning
- Preprocessing (conversions)

Cleaning:

- Get rid of errors, noise,
- Removal of redundancies

Preprocessing:

- Renaming
- Rescaling (normalization)
- Discretizations
- Abstraction
- Aggregation
- New attributes

Renaming (relabeling) categorical values to numbers

- dangerous in conjunction with some learning methods
- numbers will impose an order that is not warranted

Example:

assume the following encoding of values High, Normal, Low

```
High \rightarrow 2
Normal \rightarrow 1
Low \rightarrow 0
```

- 2 > 1 implies High > Normal: Is it OK?
- 1 > 0 implies Normal > Low: Is it OK?

Data preprocessing

Renaming (relabeling) categorical values to numbers

- dangerous in conjunction with some learning methods
- numbers will impose an order that is not warranted

Example:

• assume the following encoding of values High, Normal, Low

```
High \rightarrow 2
Normal \rightarrow 1
Low \rightarrow 0
```

- 2 >1 implies High > Normal: Is it OK?
- 1 > 0 implies Normal > Low: Is it OK?
- 2 > 0 implies High > Low: Is it OK?

Renaming (relabeling) categorical values to numbers

- dangerous in conjunction with some learning methods
- numbers will impose an order that is not warranted

High \rightarrow Normal \rightarrow Low \rightarrow True \rightarrow False \rightarrow Unknown \rightarrow

Data preprocessing

Renaming (relabeling) categorical values to numbers

- dangerous in conjunction with some learning methods
- numbers will impose an order that is not warranted

High \rightarrow Normal \rightarrow Low \rightarrow True \rightarrow False \rightarrow Unknown \rightarrow Red \rightarrow Blue \rightarrow Green \rightarrow

Renaming (relabeling) categorical values to numbers

- dangerous in conjunction with some learning methods
- numbers will impose an order that is not warranted

High \rightarrow Normal \rightarrow Low \rightarrow True \rightarrow False \rightarrow Unknown \rightarrow Red \rightarrow Blue \rightarrow Green \rightarrow

Data preprocessing

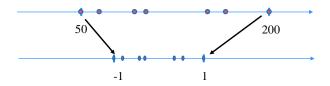
Renaming (relabeling) categorical values to numbers

Problem: How to safely represent the different categories as numbers when no order exists?

Solution:

- Use indicator vector (or one-hot) representation.
- Example: Red, Blue, Green colors
 - -3 categories \rightarrow use a vector of size 3 with binary values
 - Encoding:
 - **Red:** (1,0,0);
 - **Blue:** (0,1,0);
 - **Green:** (0,0,1)

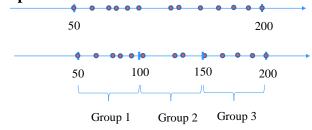
• **Rescaling (normalization):** continuous values transformed to some range, typically [-1, 1] or [0,1].



- Why normalization?
 - Some learning algorithms are sensitive to the values recorded in the specific input field and its magnitude

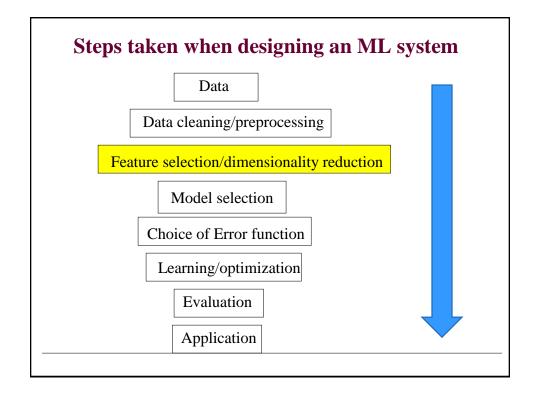
Data preprocessing

- **Discretization (binning):** continuous values to a finite set of discrete values
- Example:



• Example 2:

- Abstraction: merge together categorical values
- **Aggregation:** summary or aggregation operations, such minimum value, maximum value, average etc.
- New attributes:
 - example: obesity-factor = weight/height



Feature selection/dimensionality reduction

• The size (dimensionality) of an instance can be enormous

$$x_i = (x_i^1, x_i^2, ..., x_i^d)$$

• **Problem:** Too many parameters to learn (not enough samples to justify the estimates the parameters of the model)

10K

Example: document classification

- 10.000 different words
- Big vector: counts of occurrences of different words

Feature selection/dimensionality reduction

- Dimensionality reduction solutions
 - Extract a small subset of original inputs
 - Project inputs into a lower dimensional vector:
 - PCA principal component analysis
 - Latent variable models
 - Auto-encoders

10K

