CS 2750 Machine Learning

 Lecture 12
Support vector machines II

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Linearly separable classes

Linearly separable classes:

There is a hyperplane

$$
\mathbf{w}^{T} \mathbf{x}+w_{0}=0
$$

that separates training instances with no error

Learning linearly separable sets

Finding weights for linearly separable classes:

- Linear program (LP) solution
- It finds weights that satisfy the following constraints:

$\mathbf{w}^{T} \mathbf{x}_{i}+w_{0} \geq 0 \quad$ For all i, such that $\quad y_{i}=+1$
$\mathbf{w}^{T} \mathbf{x}_{i}+w_{0} \leq 0 \quad$ For all i, such that $y_{i}=-1$
Together: $\quad y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+w_{0}\right) \geq 0$

Property: if there is a hyperplane separating the examples, the linear program finds the solution

Optimal separating hyperplane

- Problem: multiple hyperplanes that separate the data exists
- Which one to choose?
- Maximum margin choice: maximum distance of $d_{+}+d_{-}$
- where d_{+}is the shortest distance of a positive example from the hyperplane (similarly d_{-}for negative examples)

Note: a margin classifier is a classifier for which we can calculate the distance of each example from the decision boundary

Maximum margin hyperplane

- For the maximum margin hyperplane only examples on the margin matter (only these affect the distances)
- These are called support vectors

Maximum margin hyperplane

- We want to maximize $d_{+}+d_{-}=\frac{2}{\|\mathbf{w}\|_{L 2}}$
- We do it by minimizing

$$
\|\mathbf{w}\|_{L 2}{ }^{2} / 2=\mathbf{w}^{T} \mathbf{w} / 2
$$

\mathbf{w}, w_{0} - variables

- But we also need to enforce the constraints on all data instances: $\quad\left(\mathbf{x}_{i}, y_{i}\right)$

$$
\left[y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+w_{0}\right)-1\right] \geq 0
$$

Maximum margin hyperplane

- Solution: Incorporate constraints into the optimization
- Optimization problem (Lagrangian)

$$
\begin{aligned}
& J\left(\mathbf{w}, w_{0}, \alpha\right)=\|\mathbf{w}\|^{2} / 2-\sum_{i=1}^{n} \alpha_{i}\left[y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+w_{0}\right)-1\right] \quad \begin{array}{r}
\text { Data instanc } \\
\left(\mathbf{x}_{i}, y_{i}\right)
\end{array} \\
& \alpha_{i} \geq 0 \quad \text { - Lagrange multipliers }
\end{aligned}
$$

- Minimize with respect to \mathbf{w}, w_{0} (primal variables)
- Maximize with respect to $\boldsymbol{\alpha}$ (dual variables)

What happens to α :
if $y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+w_{0}\right)-1>0 \Longrightarrow \alpha_{i} \rightarrow 0$ else $\quad \Rightarrow \alpha_{i}>0$

Active constraint

Max margin hyperplane solution

- Set derivatives to 0 (Karush-Kuhn-Tucker conditions)

$$
\begin{aligned}
\nabla_{\mathbf{w}} J\left(\mathbf{w}, w_{0}, \alpha\right) & =\mathbf{w}-\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i}=\overline{0} \square \mathbf{w}=\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i} \\
\frac{\partial J\left(\mathbf{w}, w_{0}, \alpha\right)}{\partial w_{0}} & =-\sum_{i=1}^{n} \alpha_{i} y_{i}=0
\end{aligned}
$$

- Now we need to solve for Lagrange parameters (Wolfe dual)

$$
J(\alpha)=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j}\left(\mathbf{x}_{i}^{T} \mathbf{x}_{j}\right) \Longleftrightarrow \text { maximize }
$$

Subject to constraints

$$
\alpha_{i} \geq 0 \quad \text { for all } i, \text { and } \quad \sum_{i=1}^{n} \alpha_{i} y_{i}=0
$$

- Quadratic optimization problem: solution $\hat{\alpha}_{i}$ for all i

Maximum margin solution

- The resulting parameter vector $\hat{\mathbf{w}}$ can be expressed as: $\hat{\mathbf{w}}=\sum_{i=1}^{n} \hat{\alpha}_{i} y_{i} \mathbf{x}_{i} \quad \hat{\alpha}_{i}$ is the solution of the optimization
- The parameter w_{0} is obtained from $\hat{\alpha}_{i}\left[y_{i}\left(\hat{\mathbf{w}} \mathbf{x}_{i}+w_{0}\right)-1\right]=0$

Solution properties

- $\hat{\alpha}_{i}=0$ for all points that are
not on the margin
- The decision boundary:

$$
\hat{\mathbf{w}}^{T} \mathbf{x}+w_{0}=\sum_{i \in S V} \hat{\alpha}_{i} y_{i}\left(\mathbf{x}_{i}^{T} \mathbf{x}\right)+w_{0}=0
$$

The decision boundary defined by support vectors only

Support vector machines: solution property

- Decision boundary defined by a set of support vectors SV and their alpha values
- Support vectors $=$ a subset of datapoints in the training data that define the margin

$$
\hat{\mathbf{w}}^{T} \mathbf{x}+w_{0}=\sum_{i \in S V} \hat{\alpha}_{i} y_{i}\left(\mathbf{x}_{i}{ }^{T} \mathbf{x}\right)+w_{0}
$$

- Classification decision for new x :
${ }^{\left.{ }_{i}{ }^{T} \mathbf{x}\right)+w_{0}} \mathrm{La}$
- Note that we do not have to explicitly compute $\hat{\mathbf{w}}$
- This will be important for the nonlinear (kernel) case

Support vector machines

- The decision boundary:

$$
\hat{\mathbf{w}}^{T} \mathbf{x}+w_{0}=\sum_{i \in S V} \hat{\alpha}_{i} y_{i}\left(\mathbf{x}_{i}{ }^{T} \mathbf{x}\right)+w_{0}
$$

- Classification decision:

$$
\hat{y}=\operatorname{sign}\left[\sum_{i \in S V} \hat{\alpha}_{i} y_{i}\left(\mathbf{x}_{i}{ }^{T} \mathbf{x}\right)+w_{0}\right]
$$

Support vector machines: inner product

- Decision on a new \mathbf{x} depends on the inner product between two examples
- The decision boundary:

$$
\hat{\mathbf{w}}^{T} \mathbf{x}+w_{0}=\sum_{i \in S V} \hat{\alpha}_{i} y_{i}\left(\mathbf{x}_{i}^{T} \mathbf{x}+w_{0}\right.
$$

- Classification decision:

$$
\hat{y}=\operatorname{sign}\left[\sum_{i \in S V} \hat{\alpha}_{i} y\left(\left(\mathbf{x}_{i}{ }^{T} \mathbf{x}\right)+w_{0}\right]\right.
$$

- Similarly, the optimization depends on $\left(\mathbf{x}_{i}{ }^{T} \mathbf{x}_{j}\right)$

$$
J(\alpha)=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j}\left(\mathbf{x}_{i}{ }^{T} \mathbf{x}_{j}\right)
$$

Inner product of two vectors

- The decision boundary for the SVM and its optimization depend on the inner product of two datapoints (vectors):

$$
\mathbf{x}_{i}=\left(\begin{array}{c}
2 \\
5 \\
6
\end{array}\right) \quad \mathbf{x}_{j}=\left(\begin{array}{l}
2 \\
3 \\
1
\end{array}\right)
$$

$\left(\mathbf{x}_{i}{ }^{T} \mathbf{x}_{j}\right)=?$

Inner product of two vectors

- The decision boundary for the SVM and its optimization depend on the inner product of two data points (vectors):

$$
\begin{gathered}
\mathbf{x}_{i}=\left(\begin{array}{l}
2 \\
5 \\
6
\end{array}\right) \quad \mathbf{x}_{j}=\left(\begin{array}{l}
2 \\
3 \\
1
\end{array}\right) \\
\left(\mathbf{x}_{i}{ }^{T} \mathbf{x}_{j}\right)=\left(\begin{array}{lll}
2 & 5 & 6
\end{array}\right) *\left(\begin{array}{l}
2 \\
3 \\
1
\end{array}\right)=2 * 2+5 * 3+6 * 1=25
\end{gathered}
$$

Inner product of two vectors

- The decision boundary for the SVM and its optimization depend on the inner product of two data points (vectors):

$$
\mathbf{x}_{i}{ }^{T} \mathbf{x}_{j}
$$

- The inner product is equal

$$
\left(\mathbf{x}_{i}^{T} \mathbf{x}_{j}\right)=\left\|\mathbf{x}_{i}\right\| *\left\|\mathbf{x}_{j}\right\| \cos \theta
$$

If the angle in between them is 0 then:

$$
\left(\mathbf{x}_{i}^{T} \mathbf{x}_{j}\right)=\left\|\mathbf{x}_{i}\right\| *\left\|\mathbf{x}_{j}\right\|
$$

If the angle between them is 90 then:

$$
\left(\mathbf{x}_{i}^{T} \mathbf{x}_{j}\right)=0
$$

The inner product measures how similar the two vectors are

Extension to a linearly non-separable case

- Idea: Allow some flexibility on crossing the separating hyperplane

Linearly non-separable case

- Relax constraints with variables $\xi_{i} \geq 0$

$$
\begin{array}{lll}
\mathbf{w}^{T} \mathbf{x}_{i}+w_{0} \geq 1-\xi_{i} \quad \text { for } & y_{i}=+1 \\
\mathbf{w}^{T} \mathbf{x}_{i}+w_{0} \leq-1+\xi_{i} \text { for } & y_{i}=-1
\end{array}
$$

- Error occurs if $\xi_{i} \geq 1, \sum_{i=1}^{n} \xi_{i}$ is the upper bound on the
number of errors
- Introduce a penalty for the errors (soft margin)

$$
\operatorname{minimize}\|\mathbf{w}\|^{2} / 2+C \sum_{i=1}^{n} \xi_{i}
$$

Subject to constraints
C - set by a user, larger C leads to a larger penalty for an error

Linearly non-separable case

minimize $\|\mathbf{w}\|^{2} / 2+C \sum_{i=1}^{n} \xi_{i}$

$$
\begin{array}{lll}
\mathbf{w}^{T} \mathbf{x}_{i}+w_{0} \geq 1-\xi_{i} \quad \text { for } & y_{i}=+1 \\
\mathbf{w}^{T} \mathbf{x}_{i}+w_{0} \leq-1+\xi_{i} \text { for } & y_{i}=-1 \\
\xi_{i} \geq 0 & &
\end{array}
$$

- Rewrite $\xi_{i}=\max \left[0, \quad 1-y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+w_{0}\right)\right]$ in $\|\mathbf{w}\|^{2} / 2+C \sum_{i=1}^{n} \xi_{i}$

Regularization penalty

Hinge loss

Linearly non-separable case

- Lagrange multiplier form (primal problem)

$$
J\left(\mathbf{w}, w_{0}, \alpha\right)=\|\mathbf{w}\|^{2} / 2+C \sum_{i=1}^{n} \xi_{i}-\sum_{i=1}^{n} \alpha_{i}\left[y_{i}\left(\mathbf{w}^{T} \mathbf{x}+w_{0}\right)-1+\xi_{i}\right]-\sum_{i=1}^{n} \mu_{i} \xi_{i}
$$

- Dual form after \mathbf{w}, w_{0} are expressed (ξ_{i} s cancel out)
$J(\alpha)=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j}\left(\mathbf{x}_{i}{ }^{T} \mathbf{x}_{j}\right)$
Subject to: $0 \leq \alpha_{i} \leq C$ for all i, and $\sum_{i=1}^{n} \alpha_{i} y_{i}=0$
Solution: $\quad \hat{\mathbf{w}}=\sum_{i=1}^{n} \hat{\alpha}_{i} y_{i} \mathbf{x}_{i}$
The difference from the separable case: $0 \leq \alpha_{i} \leq C$
The parameter w_{0} is obtained through KKT conditions

Support vector machines: solution

- The solution of the linearly non-separable case has the same properties as the linearly separable case.
- The decision boundary is defined only by a set of support vectors (points that are on the margin or that cross the margin)
- The decision boundary and the optimization can be expressed in terms of the inner product in between pairs of examples

$$
\begin{aligned}
& \hat{\mathbf{w}}^{T} \mathbf{x}+w_{0}=\sum_{i \in S V} \hat{\alpha}_{i} y\left(\mathbf{x}_{i}^{T} \mathbf{x}+w_{0}\right. \\
& \hat{y}=\operatorname{sign}\left[\hat{\mathbf{w}}^{T} \mathbf{x}+w_{0}\right]=\operatorname{sign}\left[\sum_{i \in S V} \hat{\alpha}_{i} y_{i}\left(\mathbf{x}_{i}{ }^{T} \mathbf{x}\right)+w_{0}\right] \\
& J(\alpha)=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j}\left(\mathbf{x}_{i}{ }^{T} \mathbf{x}_{j}\right)
\end{aligned}
$$

Nonlinear decision boundary

So far we have seen how to learn a linear decision boundary

- But what if the linear decision boundary is not good.
- How we can learn non-linear decision boundaries with the SVM?

Nonlinear decision boundary

- The non-linear case can be handled by using a set of features. Essentially we map input vectors to (larger) feature vectors

$$
\mathbf{x} \rightarrow \varphi(\mathbf{x})
$$

- Note that feature expansions are typically high dimensional
- Examples: polynomial expansions
- Given the nonlinear feature mappings, we can use the linear SVM on the expanded feature vectors

$$
\left(\mathbf{x}^{T} \mathbf{x}^{\prime}\right) \longrightarrow \boldsymbol{\varphi}(\mathbf{x})^{T} \boldsymbol{\varphi}\left(\mathbf{x}^{\prime}\right)
$$

- Kernel function

$$
K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\boldsymbol{\varphi}(\mathbf{x})^{T} \boldsymbol{\varphi}\left(\mathbf{x}^{\prime}\right)
$$

Support vector machines: solution for nonlinear decision boundaries

- The decision boundary:

$$
\hat{\mathbf{w}}^{T} \mathbf{x}+w_{0}=\sum_{i \in S V} \hat{\alpha}_{i} y, K\left(\mathbf{x}_{i}, \mathbf{x}\right)+w_{0}
$$

- Classification:

$$
\hat{y}=\operatorname{sign}\left[\hat{\mathbf{w}}^{T} \mathbf{x}+w_{0}\right]=\operatorname{sign}\left[\sum_{i \in S V} \hat{\alpha}_{i} y K\left(\mathbf{x}_{i}, \mathbf{x}\right)-w_{0}\right]
$$

- Decision on a new \mathbf{x} requires to compute the kernel function defining the similarity between the examples
- Similarly, the optimization depends on the kernel

$$
J(\alpha)=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y, K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)
$$

Kernel trick

The non-linear case maps input vectors to (larger) feature space

$$
\mathbf{x} \rightarrow \varphi(\mathbf{x})
$$

- Note that feature expansions are typically high dimensional
- Examples: polynomial expansions
- Kernel function defines the inner product in the expanded high dimensional feature vectors and let us use the SVM

$$
\left(\mathbf{x}^{T} \mathbf{x}^{\prime}\right) \longrightarrow K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\boldsymbol{\varphi}(\mathbf{x})^{T} \boldsymbol{\varphi}\left(\mathbf{x}^{\prime}\right)
$$

- Problem: after expansion we need to perform inner products in a very high dimensional space
- Kernel trick:
- If we choose the kernel function wisely we can compute linear separation in the high dimensional feature space implicitly by working in the original input space !!!!

Kernel function example

- Assume $\mathbf{x}=\left[x_{1}, x_{2}\right]^{T}$ and a feature mapping that maps the input into a quadratic feature set

$$
\mathbf{x} \rightarrow \boldsymbol{\varphi}(\mathbf{x})=\left[x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}, \sqrt{2} x_{1}, \sqrt{2} x_{2}, 1\right]^{T}
$$

- Kernel function for the feature space:

Kernel function example

- Assume $\mathbf{x}=\left[x_{1}, x_{2}\right]^{T}$ and a feature mapping that maps the input into a quadratic feature set

$$
\mathbf{x} \rightarrow \boldsymbol{\varphi}(\mathbf{x})=\left[x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}, \sqrt{2} x_{1}, \sqrt{2} x_{2}, 1\right]^{T}
$$

- Kernel function for the feature space:

$$
\begin{aligned}
K\left(\mathbf{x}^{\prime}, \mathbf{x}\right) & =\boldsymbol{\varphi}\left(\mathbf{x}^{\prime}\right)^{T} \boldsymbol{\varphi}(\mathbf{x}) \\
& =x_{1}^{2} x_{1}^{\prime 2}+x_{2}^{2} x_{2}^{\prime 2}+2 x_{1} x_{2} x_{1}^{\prime} x_{2}^{\prime}+2 x_{1} x_{1}^{\prime}+2 x_{2} x_{2}^{\prime}+1 \\
& =\left(x_{1} x_{1}^{\prime}+x_{2} x_{2}^{\prime}+1\right)^{2} \\
& =\left(1+\left(\mathbf{x}^{T} \mathbf{x}^{\prime}\right)\right)^{2}
\end{aligned}
$$

- The computation of the linear separation in the higher dimensional space is performed implicitly in the original input space

Kernel function example

Linear separator in the expanded feature space

Non-linear separator in the input space

Nonlinear extension

Kernel trick

- Replace the inner product with a kernel
- A well chosen kernel leads to an efficient computation

Kernel functions

- Linear kernel

$$
K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\mathbf{x}^{T} \mathbf{x}^{\prime}
$$

- Polynomial kernel

$$
K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left[1+\mathbf{x}^{T} \mathbf{x}^{\prime}\right]^{k}
$$

- Radial basis kernel

$$
K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\exp \left[-\frac{1}{2}\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|^{2}\right]
$$

Kernels

- ML researchers have proposed kernels for comparison of variety of objects
- Strings
- Trees
- Graphs
- Cool thing:
- SVM algorithm can be now applied to classify a variety of objects

End

Kernels

- Kernels define a similarity measure :
- Design criteria: we want kernels to be
- valid - Satisfy Mercer condition of positive semidefiniteness
- good - embody the "true similarity" between objects
- appropriate - generalize well
- efficient - the computation of $K\left(x, x^{\prime}\right)$ is feasible

Fisher linear discriminant

- Assume a decision boundary

$$
\mathbf{w}^{T} \mathbf{x}+w_{0}=0
$$

Fisher linear discriminant

Assume a decision boundary

$$
\mathbf{w}^{T} \mathbf{x}+w_{0}=0
$$

Assume $\quad y=\mathbf{w}^{T} \mathbf{x}$ - a line perpendicular to the decision boundary $w_{0}-a$ threshold on the line separating class 0 and 1

Fisher linear discriminant

- Finding a decision boundary can be decomposed to 2 tasks

1. Finding of: $y=\mathbf{w}^{T} \mathbf{x}$
2. Finding of w_{0}

CS 2750 Machine Learning

Fisher linear discriminant

How to find the projection line?

$$
y=\mathbf{w}^{T} \mathbf{x}
$$

Fisher linear discriminant

Assume:

$$
\mathbf{m}_{1}=\frac{1}{N_{1}} \sum_{i \in C_{1}}^{N_{1}} \mathbf{x}_{i} \quad \mathbf{m}_{2}=\frac{1}{N_{2}} \sum_{i \in C_{2}}^{N_{2}} \mathbf{x}_{i}
$$

Maximize the difference in projected means:

$$
m_{2}-m_{1}=\mathbf{w}^{T}\left(\mathbf{m}_{2}-\mathbf{m}_{1}\right)
$$

Fisher linear discriminant

Problem 1: $\quad m_{2}-m_{1}=\mathbf{w}^{T}\left(\mathbf{m}_{2}-\mathbf{m}_{1}\right) \quad$ can be maximized by increasing \mathbf{w}
Problem 2: variance in class distributions after projection is changed

Fisher's solution:

$$
J(\mathbf{w})=\frac{m_{2}-m_{1}}{s_{1}^{2}+s_{2}^{2}}
$$

Within class variance

$$
s_{k}^{2}=\sum_{i \in C_{k}}\left(y_{i}-m_{k}\right)^{2}
$$

Fisher linear discriminant

Objective function (to maximize):

$$
J(\mathbf{w})=\frac{m_{2}-m_{1}}{s_{1}^{2}+s_{2}^{2}}
$$

Within class variance after the projection

$$
s_{k}^{2}=\sum_{i \in C_{k}}\left(y_{i}-m_{k}\right)^{2}
$$

Optimal solution:

$$
\begin{gathered}
\mathbf{w} \approx \mathbf{S}_{\mathbf{w}}^{-1}\left(\mathbf{m}_{2}-\mathbf{m}_{1}\right) \\
\mathbf{S}_{\mathbf{w}}=\sum_{i \in C_{1}}\left(\mathbf{x}_{i}-\mathbf{m}_{1}\right)\left(\mathbf{x}_{i}-\mathbf{m}_{1}\right)^{T} \\
+\sum_{i \in C_{2}}\left(\mathbf{x}_{i}-\mathbf{m}_{2}\right)\left(\mathbf{x}_{i}-\mathbf{m}_{2}\right)^{T}
\end{gathered}
$$

