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Linear models for classification
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Discriminant functions

« A common way to represent a classifier is by using
— Discriminant functions
« Works for both the binary and multi-way classification
* ldea:
— Forevery class i = 0,1, ...k define a function g;(X)
mapping X — R
— When the decision on input x should be made choose the
class with the highest value of g, (x)

y* =arg max; g; (X)
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Logistic regression model

e Discriminant functions:
g, (X) =g(W'x) Jo(X) =1—g(W'x)

» Values of discriminant functions vary in interval [0,1]
— Probabilistic interpretation

f(x,w) = p(y =1|w,X) = g,(X) = g(W'x)
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Logistic function
Function: g(z) =

1+e™)

« Is also referred to as a sigmoid function

« takes a real number and outputs the number in the interval [0,1]

« Models a smooth switching function; replaces hard threshold
function

Logistic (smooth) switching Threshold (hard) switching




Logistic regression model. Decision boundary

LR defines a linear decision boundary
Example: 2 classes (blue and red points)
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Logistic regression: parameter learning

Notation: = py, =1|x,w)=9(z) = g(WTXi)
Log likelihood

I(D.w) = v, log s + (L y,) log(1— 41

i=1
Derivatives of the loglikelihood

= I(D,w)=§xi,,-(yi—g(zi»

]

Nonlinear in weights !

VIOW =3 Xy~ g X)) =3 Xy~ f (W)
Gradient desc_ent: i

w® WD _a(k)vw[—l (D, W)] |W(k—1)

W WP +a (k)Y Iy — F WP, x)Ix,
i=1




Logistic regression. Online gradient descent

* On-line component of the loglikelihood
Jontine( Dy, W) = _[yi log 14 +@A—Y;) Iog(l_/’li)]
« On-line learning update for weightw  Joine( Dy » W)

W WD — @ (K)V [ gnine( D s W e o

- ith update for the logistic regression and D, =<X,, Y, >

w® W L a(K)[y, — F (Ww*P,x,)]Ix,

When does the logistic regression fail?

» Nonlinear decision boundary

Decision boundary
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When does the logistic regression fail?

« Another example of a non-linear decision boundary

Non-linear extension of logistic regression

« use feature (basis) functions to model nonlinearities
+ the same trick as used for the linear regression

Linear reg ressrLon Logistic regression
m

FOO)=Wo+ D> Wigh(X)  p(y =1]%) = g(W, +>_W;¢; (X))
j=1 j=1

P, (X) - an arbitrary function of x
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Regularized logistic regression

« If the model is too complex and can cause overfitting, its
prediction accuracy can be improved by removing some
inputs from the model = setting their coefficients to zero

* We can apply the same idea to the logistic regression:

p(y =1|x) = g(w'x) Wy, W,,... W, - parameters (weights)

Input vector <
X .

 Xd
P(Y =1]X) = g(WyXg +0X, +W, X, +WeXs +... W, Xy) = g (W)

Ridge (L2) penalty
Linear regression — Ridge penalty:

1
3o w) == D00 = W)+ W,

i=1,.n
Fit to data Model complexity penalty
d

”W”Lz2 - ;Wiz =w'w and A=20

Logistic regression:
Jn(w) =—log P(D|w)

Fit to data Model complexity penalty
J,(w) = —[Z yi log g(w™x) + (@~ y;) log(1-g(w'x)) |+ A|w]|_,

i=1
Fit to data measured using the negative log likelihood
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Lasso (L1) penalty

Linear regression — Lasso penalty:

1
Jn(W) 35 20 =WIX)F AW,
i=1,..n
Fit to data Model complexity penalty
d
||W|||_1 - Zl w; | and A4=0

Logistic regression:
J.(w)=—log P(D|w)+ /1||W||L1

Fit to data Model complexity penalty
Jn(w) = —[Z yilog g(w'x)+ (- ;) log(1-g(w'x, ))} + Alw],

i=1
Fit to data measured using the negative log likelihood

Generative approach to classification

Logistic regression:
+ Represents and learns a model of | p(y | X)
« An example of a discriminative classification approach

« Model is unable to sample (generate) data instances (X, Y)
Generative approach:
» Represents and learns a joint distribution pP(X,y)
» Model is able to sample (generate) data instances (X, y)
» The joint model defines probabilistic discriminant functions

How? 9.(x) = p(y =1| x) = p(x,y=1) _pXxly=Dp(y=1)
' p(x) p(X)

0,00 = ply=0[x) = P&Y=0) _ p(xly=0)p(y=0)
° p(x) p(x)

P(y=0[x)+p(y =1|x) =1




Generative approach to classification

Typical joint model p(x,y) = p(x|y)p(y)
« p(x]y) = Class-conditional distributions

(densities)

binary classification: two class-conditional

distributions

p(x|y=0) p(x|y=1) px1y)

« p(Y) =Priorson classes

— probability of class y

— for binary classification: Bernoulli distribution

p(y=0)+p(y=1)=1

p(y)

Quadratic discriminant analysis (QDA)

Model:
+ Class-conditional distributions are
— multivariate normal distributions
X~N(uy,%,) for y=0
X~N(n, %) for y=1
Multivariate normal X~ N(p, X)
POXIE) = L rexp] 2 () E ) |
2 2|>:.| 2
« Priors on classes (class 0,1) Y ~ Bernoulli

— Bernoulli distribution
p(y.0)=6"1-0)">  ye{0l}




Learning of parameters of the QDA model

Density estimation in statistics

» We see examples — we do not know the parameters of
Gaussians (class-conditional densities)

P(X |1, %) = EXD[—%(X—u)T El(x—u)}

o
(27Z')d/2|2|1/2

« ML estimate of parameters of a multivariate normal N (p, X)
for a set of n examples of x

Optimize log-likelihood: (D, p,X) = log ﬁ p(x; |, X)
i=1

1 L1 . .
p==2 X == (- -’
N N4

« How about class priors?

Learning Quadratic discriminant analysis
(QDA)
» Learning Class-conditional distributions
— Learn parameters of 2 multivariate normal
distributions
X~N(uy,%,) for y=0
X~N(n, %) for y=1

— Use the density estimation methods

« Learning Priors on classes (class 0,1) y ~ Bernoulli
— Learn the parameter of the Bernoulli distribution
— Again use the density estimation methods

p(y,0)=0"@1-0)"> ye{0%
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2 Gaussian class-conditional densities

Class conditional densities




QDA: Making class decision

Basically we need to design discriminant functions

 Posterior of a class — choose the class with better posterior
probability

P(y=1|x)>p(y=0[X) m=p then y=1
9.(X) NS else y=0

p(X | A 21) p(y :1)

—1|x) =
P = S Tt 20 P (Y = 0)+ P(X] 4,2 (Y =D

 Notice it is sufficient to compare:
P(X| 44, 2) P(Y =1) > P(X| 445, Z) P(y =0)

QDA: Quadratic decision boundary

Contours of class-conditional densities
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QDA: Quadratic decision boundary
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Linear discriminant analysis (LDA)

« Assumes covariances are the same X~ N(p,,X), y=0

x~N(pn, %), y=1
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LDA: Linear decision boundary

Contours of class-conditional densities

LDA: linear decision boundary

Decision boundary
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Generative classification models
Idea:
1. Represent and learn the distribution p(x,y)
2. Model is able to sample (generate) data instances (X, Y)
3. The model is used to get probabilistic discriminant
functions  g,(x)=p(y=0[x) g;(X)=p(y=1|X)
Typical model P(X, y) = p(x| y) p(y)
* p(x|y) = Class-conditional distributions (densities)

binary classification: two class-conditional distributions
p(x|y=0) p(x|y=1)
* p(y) =Priorson classes - probability of classy
binary classification: Bernoulli distribution

p(y=0)+p(y=1)=1

Naive Bayes classifier

A generative classifier model with an additional simplifying
assumption:

« All input attributes are conditionally independent of each
other given the class.

 One of the basic ML classification models (often performs very
well in practice)

So we have: P(Y)
: oy
P(X, y) = p(X|y)p(y) \
pxIy)=]T p(x1y)
(1Y) /P01 Y) p(Xs 1Y)
O O
X, X, Xq

14



Learning parameters of the model

Much simpler density estimation problems
« We need to learn:
p(x|y=0) and p(x|y=1) and p(y)

 Because of the assumption of the conditional independence we
need to learn:

for every input variable i: p(X;, | y=0) and p(x; |y =1)
« Much easier if the number of input attributes is large

 Also, the model gives us a flexibility to represent input
attributes of different forms !!!

« E.g. one attribute can be modeled using the Bernoulli, the
other using Gaussian density, or a Poisson distribution

Making a class decision for the Naive Bayes

Discriminant functions

 Posterior of a class — choose the class with better posterior
probability

p(y =1|x) > p(y=0[X) then y=1
else y=0

d
[H p(Xi |®1,i)jp(y=1)
ply =113 = d
(H p(Xi |®1,iJ) p(y :0)“'[ g p(Xi |®2,i))p(y :1)
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Next: two interesting questions

(1) Two probabilistic models with linear decision boundaries:

— Logistic regression
— LDA model (2 Gaussians with the same covariance
matrices X~N(z,2) for y=0
X~N(g,2) for y=1

» Question: Is there any relation between the two models?
(2) Two models with the same gradient:

— Linear model for regression

— Logistic regression model for classification

have the same gradient update n

wWew+a) (Y- f (X)X
i=1

* Question: Why is the gradient the same?

Logistic regression and generative models

» Two models with linear decision boundaries:
— Logistic regression
— Generative model with 2 Gaussians with the same
covariance matrices  x — N(y,,x) for y=0
X~N(,2) for y=1
Question: Is there any relation between the two models?
Answer: Yes, the two models are related !!!

— When we have 2 Gaussians with the same covariance
matrix the probability of y given x has the form of a
logistic regression model !!!

p(y:]-l X,Mo,lll,z) = g(WTX)

CS 2750 Machine Learning
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Logistic regression and generative models

« Members of the exponential family can be often more

naturally described as
0'x— A0
f (x10,0) =h(x, ) exp{—()}

a(e)

0 - Alocation parameter ¢ - Ascale parameter

« Claim: A logistic regression is a correct model when class
conditional densities are from the same distribution in the
exponential family and have the same scale factor @

* Very powerful result !'!!

— We can represent posteriors of many distributions with
the same small logistic regression model

CS 2750 Machine Learning

The gradient puzzle ...

Linear regression Logistic regression
f(x)=w'x f(x)=p(y =1|xw)=g(W'x)
1
Wo
X, W z f(x)
W
X2
:/
X4
Gradient uPdate: Gradient update:
wew+a) (v - f(x))x  Thesame wew+a) (v - F (X)X
=1 =
Online: W «— W+ (Y — T (X))X online: W «—W+a(y— T (X)X

CS 2750 Machine Learning
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The gradient puzzle ...

« The same simple gradient update rule derived for both the
linear and logistic regression models

» Where the magic comes from?

 Under the log-likelihood measure the function models and the
models for the output selection fit together:

— Linear model + Gaussian noise D Gaussian noise

y=wW'x+¢ &~N(0,07%)

— Logistic + Bernoulli

Bernoulli trial

f: gw'x) i y

y = Bernoulli( &)

X

0 =p(y=1|x)=g(w'x) "

Xy

Generalized linear models (GLIMs)

Assumptions:
» The conditional mean (expectation) is:
1= f(w'x)
— Where f(.) isa response function

« Output y is characterized by an exponential family distribution
with a conditional mean u

Examples:
— Linear model + Gaussian noise
y=wW'x+¢ &~ N(0,c?%)

— Logistic + Bernoulli -

y =~ Bernoulli( &) &

O=g(w'x)=

Gaussian noise

Bernoulli trial

f: gw'x) é y

1+e™ X X,

18



Generalized linear models (GLIMs)

« A canonical response functions f(.) :
— encoded in the sampling distribution

p(x|0,¢9) =h(x,¢) exp{e);;—qf)‘(e)}

« Leads to a simple gradient form
« Example: Bernoulli distribution

P(X| 1) = 4" (U= p2)" = exp{log[1 f‘ﬂ}x+ Iog(l—y)}

y7; 1
g(l—,uj H o 1ve”

— Logistic function matches the Bernoulli

Evaluation of classifiers

CS 2750 Machine Learning




Classification model learning

Learning:
« Many different ways and objective criteria used to learn the

classification models. Examples:
— Mean squared errors to learn the discriminant functions

— Negative log likelihood (logistic regression)

Evaluation:
« One possibility: Use the same error criteria as used during the

learning (apply to train & test data). Problems:
— May work for discriminative models

— Harder to interpret for humans.
* Question: how to more naturally evaluate the classifier

performance?

Evaluation of classification models

For any data set we use to test the classification model on we can

build a confusion matrix:

— Counts of examples with:
— class label @ that are classified with a label «;

target
| wo=1 w=0
. a=1 140 17
predict
a=0 20 54

20



Evaluation of classification models

Confusion matrix entries are often normalized with respect to
the number of examples N to get proportions of the
different agreements and disagreements among predicted

and target values
target
w=1 w=0
140/231 17/231
20/231 54/231

.«
predict
o

Basic evaluation statistics

Basic statistics calculated from the confusion matrix:

target
‘ wo=1 w=0
14 17
2 5

. a=1
predict
a=0

Classification Accuracy = 194/231

21



Basic evaluation statistics

Basic statistics calculated from the confusion matrix:

target
w=1 w=0
) o 14 17
predict
a =0 20 54

Classification Accuracy = 194/231
Misclassificion Error = 37/231 =1 - Accuracy

Evaluation for binary classification

Entries in the confusion matrix for binary classification have

names:
target

w=1 w=0
. o TP FP
predict

a=0 FN TN

TP: True positive (hit)

FP: False positive (false alarm)

TN: True negative (correct rejection)
FN: False negative (a miss)

22



Additional statistics

+ Sensitivity (recall) TP
SENS =
TP +FN
* Specificity
spEc TN
TN + FP

« Positive predictive value (precision)

PPT = L
TP + FP
« Negative predictive value
NPV = _ N
TN + FN

Binary classification: additional statistics

« Confusion matrix

target
1 0
predict 1 140 10 PPV =140/150
0 20 180 NPV =180/200
SENS =140/160 SPEC=180/190

Row and column quantities:
— Sensitivity (SENS)
— Specificity (SPEC)
— Positive predictive value (PPV)
— Negative predictive value (NPV)
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Binary classification models

Often project data points to one dimensional space:
Defined for example by: wTx+w, or p(y=1|x,w)

W' X+w, =0 Normal or
Y direction of a plane

Binary classification models

Often project data points to one dimensional space:
Defined for example by: wTx+w, or p(y=1|x,w)

WTX +W, = 0] Normal or
direction of a plane

WX+ W,

24



Binary classification models

Often project data points to one dimensional space:
Defined for example by: wTx+w, or p(y=1|x,w)

w'X+wW, =0 Normal or
direction of a plane

|
. Question: how good is the
. model with parameters w in

terms of class discriminability
at different decision thresholds?

R coom "4: ° W' X+ W,

Receiver Operating Characteristic (ROC)

@  w,
* Probabilities:
— SENS P(X > X*|X € w,)
— SPEC threshold P(X <Xx*|X € w,)
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Receiver Operating Characteristic (ROC)

* ROC curve plots :

SN= p(X>Xx*|Xew,) - G o
1-SP= p(X > X*| X € @) AR

for different x* PSS TG
SENS

[
osﬁ

p(x>x*|xew,) |

"1-SPEC p(X>x*|x e w,)

ROC curve

X > X*| X € @,) 00
p * 2

o8
0.7
o6/
0.5
0.4
0.3‘~
o2

0.1

o

Case 1 Case 2 = Case 3
e A L
/ s
- =

I I 1 1 1 1 1 I I I

O.rS U.rS ;.
p(x > x*|X € @,)

26



Receiver operating characteristic

+ ROC

— shows the discriminability between the two classes under
different thresholds representing different decision biases

+ Decision bias
— can be changed using the different loss function

* Quality of a classification model:
— Area under the ROC
— Best value 1, worst (no discriminability): 0.5
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