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CS 2750 Machine Learning

Lecture 10

Milos Hauskrecht

milos@cs.pitt.edu

5329 Sennott Square

Linear models for classification

Discriminant functions

• A common way to represent a classifier is by using

– Discriminant functions

• Works for both the binary and multi-way classification

• Idea: 

– For every class i = 0,1, …k define a function

mapping

– When the decision on input x should be made choose the 

class with the highest value of
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Logistic regression model

• Discriminant functions:

• Values of discriminant functions vary in interval [0,1]

– Probabilistic interpretation
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Logistic function

Function: 

• Is also referred to as a sigmoid function

• takes a real number and outputs the number in the interval [0,1]

• Models a smooth switching function; replaces hard threshold 

function
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Logistic regression model.  Decision boundary

• LR defines a linear decision boundary

Example: 2 classes (blue and red points)
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Logistic regression: parameter learning

• Notation:  

• Log likelihood

• Derivatives of the loglikelihood

• Gradient descent:
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Logistic regression. Online gradient descent

• On-line component of the loglikelihood

• On-line learning update for weight w

• ith update for the logistic regression and
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When does the logistic regression fail?

• Nonlinear decision boundary
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When does the logistic regression fail?

• Another example of a non-linear decision boundary

-4 -3 -2 -1 0 1 2 3 4 5
-4

-3

-2

-1

0

1

2

3

4

5
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Non-linear extension of logistic regression
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Regularized logistic regression

• If the model is too complex and can cause overfitting, its 
prediction accuracy can be improved by removing some 
inputs from the model = setting their coefficients to zero

• We can apply the same idea to the logistic regression:  
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Ridge (L2) penalty

Linear regression – Ridge penalty:

Logistic regression: 
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and

Lasso (L1) penalty

Linear regression – Lasso penalty:

Logistic regression: 
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Generative approach to classification

Logistic regression:  

• Represents and learns a model of  

• An example of a discriminative classification approach

• Model is unable to sample (generate) data instances (x, y)

Generative approach:

• Represents and learns a joint distribution

• Model is able to sample (generate) data instances (x, y)

• The joint model defines probabilistic discriminant functions

How? 
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Generative approach to classification

Typical joint model

• = Class-conditional distributions 

(densities)

binary classification:  two class-conditional 

distributions

• = Priors on classes  

– probability of class y

– for binary classification: Bernoulli distribution
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Quadratic discriminant analysis (QDA)

Model:   

• Class-conditional distributions are

– multivariate normal distributions

• Priors on classes  (class 0,1)

– Bernoulli distribution
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Learning of parameters of the QDA model

Density estimation in statistics

• We see examples – we do not know the parameters of 
Gaussians (class-conditional densities)

• ML estimate of parameters of a multivariate normal            
for a set of  n examples of  x 

Optimize log-likelihood:

• How about class priors?
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Learning Quadratic discriminant analysis 

(QDA)

• Learning Class-conditional distributions

– Learn parameters of 2 multivariate normal 

distributions

– Use the density estimation methods

• Learning Priors on classes  (class 0,1)

– Learn the parameter of the Bernoulli distribution

– Again use the density estimation methods
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QDA
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QDA: Making class decision

Basically we need to design discriminant functions

• Posterior of a class – choose the class with better posterior 

probability

• Notice it is sufficient to compare: 
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QDA: Quadratic decision boundary
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QDA: Quadratic decision boundary

-2 -1.5 -1 -0.5 0 0.5 1 1.5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

Decision boundary

Linear discriminant analysis (LDA)
• Assumes covariances are the same 0,),(~ 0 yN Σμx

1,),(~ 1 yN Σμx



13

LDA: Linear decision boundary
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Generative classification models

Idea: 

1. Represent and learn the distribution

2. Model is able to sample (generate) data instances (x, y)

3. The model is used to get  probabilistic discriminant 

functions

Typical model

• = Class-conditional distributions (densities)

binary classification:  two class-conditional distributions

• = Priors on classes  - probability of class y

binary classification: Bernoulli distribution
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Naïve Bayes classifier

A generative classifier model with an additional simplifying 

assumption: 

• All input attributes are conditionally independent of each 

other given the class.

• One of the basic ML classification models (often performs very 

well in practice) 

So we have:
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Learning parameters of the model

Much simpler density estimation problems

• We need to learn:

and                        and 

• Because of the assumption of the conditional independence we 

need to learn: 

for every input variable i:                        and

• Much easier if the number of input attributes is large 

• Also, the model gives us a flexibility to represent input 

attributes of different forms !!!

• E.g. one attribute can be modeled using the Bernoulli, the 

other using Gaussian density, or a Poisson distribution
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Making a class decision for the Naïve Bayes

Discriminant functions

• Posterior of a class – choose the class with better posterior 

probability

)|0()|1( xx  ypyp then   y=1

else y=0

)1()|()0()|(

)1()|(

)|1(

,2

1

,1

1

,1

1








































ypxpypxp

ypxp

yp

ii

d

i

ii

d

i

ii

d

i
x



16

Next: two interesting questions

(1) Two probabilistic models with linear decision boundaries:

– Logistic regression

– LDA model (2 Gaussians with the same covariance 

matrices

• Question: Is there any relation between the two models?

(2) Two models with the same gradient:

– Linear model for regression

– Logistic regression model for classification

have the same gradient update

• Question: Why is the gradient the same?
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Logistic regression and generative models

• Two models with linear decision boundaries:

– Logistic regression

– Generative model with 2 Gaussians with the same 

covariance matrices

Question: Is there any relation between the two models?

Answer: Yes, the two models are related !!!

– When we have 2 Gaussians with the same covariance 

matrix the probability of y given x has the form of a 

logistic regression model !!!
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Logistic regression and generative models

• Members of the exponential family can be often more 

naturally described as 

• Claim: A logistic regression is a correct model when class 

conditional densities are from the same distribution in the 

exponential family and have the same scale factor

• Very powerful result !!!! 

– We can represent posteriors of many distributions with 

the same small logistic regression model
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The gradient puzzle …

Logistic regressionLinear regression

dx



1

1x

0w

1w

2w

dw
2x

)(xf

xwx
Tf )( )(),|1()( xwwxx

Tgypf 

xxww ))(( fy  

Gradient update: Gradient update:

The same

xxww ))(( fy  



1

)|1( xyp 

0w

1w

2w

dw

z

)(xf

1x

dx

2x





n

i

iii fy
1

))(( xxww  



n

i

iii fy
1

))(( xxww 

Online: Online:



18

The gradient puzzle …

• The same simple gradient update rule derived for both the 

linear and logistic regression models

• Where the magic comes from? 

• Under the log-likelihood measure the function models and the 

models for the output selection fit together:

– Linear model + Gaussian noise

– Logistic + Bernoulli
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Generalized linear models (GLIMs)

Assumptions:

• The conditional mean (expectation) is:

– Where              is a response function

• Output y is characterized by an exponential family distribution 

with a conditional mean

Examples:

– Linear model + Gaussian noise

– Logistic + Bernoulli
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Generalized linear models (GLIMs)

• A canonical response functions          : 

– encoded in the sampling distribution

• Leads to a simple gradient form

• Example:  Bernoulli distribution

– Logistic function matches the Bernoulli
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Evaluation of classifiers
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Classification model learning

Learning: 

• Many different ways and objective criteria used to learn the 

classification models. Examples: 

– Mean squared errors  to learn the discriminant functions

– Negative log likelihood (logistic regression)

Evaluation:

• One possibility:  Use the same error criteria as used during the 

learning (apply to train & test data). Problems: 

– May work for discriminative models 

– Harder to interpret for humans.  

• Question:  how to more naturally evaluate the classifier 

performance?

Evaluation of classification models

For any data set we use to test the classification model on we can 

build a confusion matrix:

– Counts of examples with:

– class label          that are classified with a label
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Evaluation of classification models

Confusion matrix entries are often normalized with respect to 

the number of examples N to get proportions of the 

different agreements and disagreements among predicted 

and target values 
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Basic evaluation statistics

Basic statistics calculated from the confusion matrix: 

Classification Accuracy = 194/231

predict
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Basic evaluation statistics

Basic statistics calculated from the confusion matrix: 

Classification Accuracy = 194/231

Misclassificion Error = 37/231 = 1 - Accuracy

predict
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54200

171401

01













Evaluation for binary classification

Entries in the confusion matrix for binary classification have 

names: 
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Additional statistics

• Sensitivity (recall)

• Specificity

• Positive predictive value (precision)

• Negative predictive value
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Binary classification: additional statistics

• Confusion matrix

Row and column quantities:

– Sensitivity (SENS)

– Specificity (SPEC)

– Positive predictive value (PPV)

– Negative predictive value (NPV)
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Binary classification models

Often project data points to one dimensional space:

Defined for example by:  wTx+w0 or p(y=1|x,w)

00 wT
xw Normal or 

direction of a plane

0wT xw

*x
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Binary classification models

Often project data points to one dimensional space:

Defined for example by:  wTx+w0 or p(y=1|x,w)

00 wT
xw Normal or 

direction of a plane

0wT xw

*x

0* wT xw
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Binary classification models

Often project data points to one dimensional space:

Defined for example by:  wTx+w0 or p(y=1|x,w)

00 wT
xw Normal or 

direction of a plane

0wT xw

*x

0* wT xw

Question: how good is the 

model with parameters w in 

terms of class discriminability 

at different decision thresholds?

Receiver Operating Characteristic (ROC)

• Probabilities:

– SENS

– SPEC
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Receiver Operating Characteristic (ROC)

• ROC curve plots :

1-SP=

for different x*

)|*( 2 xxxp

)|*( 1 xxxp

-20 -15 -10 -5 0 5 10 15 20
-0.02

0

0.02

0.04

0.06

0.08

0.1

21

*x

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

)|*( 1 xxxp

)|*( 2 xxxp

SENS

1-SPEC

SN=

ROC curve

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

)|*( 2 xxxp

)|*( 1 xxxp

-20 -15 -10 -5 0 5 10 15 20
-0.02

0

0.02

0.04

0.06

0.08

0.1

-20 -15 -10 -5 0 5 10 15 20
-0.02

0

0.02

0.04

0.06

0.08

0.1

-20 -15 -10 -5 0 5 10 15 20
-0.02

0

0.02

0.04

0.06

0.08

0.1

Case 1 Case 2 Case 3



27

Receiver operating characteristic

• ROC 

– shows the discriminability between the two classes under 

different thresholds representing different decision biases

• Decision bias 

– can be changed using the different loss function

• Quality of a classification model:

– Area under the ROC

– Best value 1, worst (no discriminability): 0.5


