CS 2750 Machine Learning Lecture 10

Linear models for classification

Milos Hauskrecht <u>milos@cs.pitt.edu</u> 5329 Sennott Square

Learning parameters of the model

Much simpler density estimation problems

• We need to learn:

 $p(\mathbf{x} | y = 0)$ and $p(\mathbf{x} | y = 1)$ and p(y)

• Because of the assumption of the conditional independence we need to learn:

for every input variable i: $p(x_i | y = 0)$ and $p(x_i | y = 1)$

- Much easier if the number of input attributes is large
- Also, the model gives us a flexibility to represent input attributes of different forms !!!
- E.g. one attribute can be modeled using the Bernoulli, the other using Gaussian density, or a Poisson distribution

CS 2750 Machine Learning

Classification model learning

Learning:

- Many different ways and objective criteria used to learn the classification models. Examples:
 - Mean squared errors to learn the discriminant functions
 - Negative log likelihood (logistic regression)

Evaluation:

- One possibility: Use the same error criteria as used during the learning (apply to train & test data). Problems:
 - May work for discriminative models
 - Harder to interpret for humans.
- **Question:** how to more naturally evaluate the classifier performance?

Receiver operating characteristic

- ROC
 - shows the discriminability between the two classes under different thresholds representing different decision biases
- Decision bias
 - can be changed using the different loss function
- Quality of a classification model:
 - Area under the ROC
 - Best value 1, worst (no discriminability): 0.5