CS 2750 Machine Learning

Lecture 1

Machine Learning

Milos Hauskrecht milos@pitt.edu 5329 Sennott Square, x4-8845

people.cs.pitt.edu/~milos/courses/cs2750/

Administration

Instructor:

Prof. Milos Hauskrecht

<u>milos@pitt.edu</u> 5329 Sennott Square, x4-8845

TA:

Yanbing Xue

yax14@cs.pitt.edu 5324 Sennott Square, x4-8455

Office hours: TBA

Who am I?

- Milos Hauskrecht Professor of Computer Science
- Secondary affiliations:
 - Intelligent Systems Program (ISP),
 - Department of Biomedical Informatics (DBMI)

• Research work:

 Machine learning, Data mining, Outlier detection, Probabilistic modeling, Time-series models and analysis

Applications to healthcare:

EHR data analysis, Patient monitoring and alerting, Patient safety

Administration

Study material

• Other ML books:

- K. Murphy. Machine Learning: A probabilistic perspective, MIT Press, 2012.
- J. Han, M. Kamber. Data Mining. Morgan Kauffman, 2011.
- Friedman, Hastie, Tibshirani. Elements of statistical learning. Springer, 2nd edition, 2011.
- Koller, Friedman. Probabilistic graphical models. MIT Press, 2009.
- Duda, Hart, Stork. Pattern classification. 2nd edition. J Wiley and Sons, 2000.
- T. Mitchell. Machine Learning. McGraw Hill, 1997.

	Administration
H	omework assignments (40%): weekly
_	Programming tool : Matlab (free license, CSSD machines and labs)
_	Matlab Tutorial: recitations
Ex	xams (35%):
_	Midterm – March 7, 2019
_	Final exam- week of April 15 -19, 2019
Te	erm projects (15%)
_	Presentations scheduled for final exam week
Le	ectures (10%):
_	Attendance and Activity
_	Short quizzes

Tentative topics

- Introduction to ML
 - Basic concepts
- Density estimation:
 - Basic parametric distribution
 - Exponential family distributions
 - Non-parametric density estimation methods
- Supervised Learning
 - Linear models for regression and classification.
 - Multi-layer neural networks.
 - Support vector machines. Kernel methods.
 - Decision trees
 - Non-parametric classification models

Types of learning problems		
Supervised learning		
– Takes data that consists of pairs (x , y)		
- Learns mapping $f: \mathbf{x}$ (input) $\rightarrow \mathbf{y}$ (output, response)		
Unsupervised learning		
 Takes data that consist of vectors x 		
• Learns relations x among vector components		
• Groups/clusters data into the groups		
Reinforcement learning		
- Learns mapping $f: \mathbf{x}$ (input) $\rightarrow \mathbf{y}$ (desired output)		
 From (x,y,r) triplets where x is an input, y is a response chosen by the user/system, and r is a reinforcement signal 		
– Online: see x, choose y and observe r		
• Other types of learning: Active learning, Transfer learning, Deep learning		

Supervised learning

Data: $D = \{d_1, d_2, ..., d_n\}$ a set of *n* examples $d_i = \langle \mathbf{x}_i, y_i \rangle$ \mathbf{x}_i is input vector, and *y* is desired output (given by a teacher) **Objective:** learn the mapping $f : X \to Y$ s.t. $y_i \approx f(x_i)$ for all i = 1, ..., n**Two types of problems:**

• **Regression:** X discrete or continuous \rightarrow

Y is continuous

• **Classification:** X discrete or continuous \rightarrow

Y is **discrete**

Unsupervised learning Data: D = {d₁, d₂,...,d_n} d_i = x_i vector of values No target value (output) y Objective: learn relations between samples, components of samples Types of problems: Clustering Group together "similar" examples, e.g. patient cases Density estimation Model probabilistically the population of samples

