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     Linear regression II 

Linear regression 

• Function                       

• Y is a linear combination of input components 
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Linear regression. Error. 

• Data: 

• Function:  

• We would like to have 

 

• Error function  

– measures how much our predictions deviate from the 
desired answers 

 

 

 

• Learning:  

 We want to find the weights minimizing the error ! 
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Mean-squared error 

Linear regression. Example 

• 1 dimensional input 
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Linear regression. Example. 

• 2 dimensional input ),( 21 xxx
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Solving linear regression 

• The optimal set of weights satisfies: 

 

 

 

 

 

 

Leads to a system of linear equations (SLE)  with d+1 unknowns 

of the form 

 

 

 

 

Solution to SLE:  

 

Assuming X is an nxd data matrix with rows corresponding to  

examples and columns to inputs, and y is nx1 vector of outputs, 

then   
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Gradient descent solution 

Goal: the weight optimization in the linear regression model 

 

 

An alternative to SLE solution:  

• Gradient descent 

 Idea: 

– Adjust weights in the direction that improves the Error 

– The gradient tells us what is the right direction 

 

 

                         -   a learning rate (scales the gradient changes) 
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Batch vs Online regression algorithm 

• The error function defined on the complete dataset D 

 

 

• We say we are learning the model in the batch mode: 

– All examples are available at the time of learning 

– Weights are optimizes with respect to all training examples 

 

• An alternative is to learn the model in the online mode 

– Examples are arriving sequentially 

– Model weights are updated after every example 

– If needed examples seen can be forgotten 
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Extensions of simple linear model 
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Statistical model of regression 

A statistical model of linear regression: 

        

   is a random noise, represents things we cannot capture with 
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Regularized linear regression 

• If the number of parameters is large relative to the number of 
data points used to train the model,  we face the threat of 
overfitting (generalization error of the model goes up) 

• The prediction accuracy can be often improved by setting 
some coefficients to zero 

– Increases the bias, reduces the variance of estimates 

• Solutions: 

– Subset selection 

– Ridge regression 

– Lasso regression 

– Principal component regression 
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Regularization: motivation 

• If the model is too complex and can cause overfitting, its 
prediction accuracy can be improved by removing some 
inputs from the model = setting their coefficients to zero 
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Ridge regression 

Question: how to force the weights to 0 ? 

• Error function for the standard least squares estimates:  

 

 

• We seek:  

 

• Ridge regression: 

 

 

• Where 

 

• What does the new objective function do?    
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Ridge regression 

• Standard regression:  

 

• Ridge regression: 

 

 

                            

• penalizes non-zero weights with the cost  proportional to      (a 

shrinkage coefficient)  

• If an input attribute        has a small effect on improving the error 

function it is “shut down” by the penalty term 

• Inclusion of a shrinkage penalty is often referred to as 

regularization.  

    (ridge regression is related to Tikhonov regularization) 
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Regularized linear regression 

How to solve the least squares problem if the error function is 

enriched by the regularization term              ? 

Answer: The solution to the optimal set of weights w is obtained 

again by solving a set of linear equation. 

Standard linear regression: 

 

 

Solution: 

 

 

Regularized linear regression:  
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Regularized linear regression 

Ridge regularization is also related to the Bayesian regression 

with the Gaussian prior 

Idea:  

Statistical model for linear regression: 

 

 

 

Add a prior on w 

Posterior on w:  

• The objective function for the regularized least squares 

corresponds to the problem of finding the mode of the posterior                                        

.                              , where  

 

 

 

 

 

Regularized linear regression:  
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Lasso regression 

• Standard regression:  

 

 

• Lasso regression/regularization: 

 

 

•                            penalizes non-zero weights with the cost 

           proportional to     .   

• L1 is more aggressive pushing the weights to 0 compared to L2 

• The objective function corresponds to the mode of the posterior 

in the Bayesian regression when the prior on w is modeled using 

a Laplace distribution 
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