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Density estimation III

Exponential family

Exponential family:

• all probability  mass / density functions that can be written in the 

exponential normal form

• a vector of natural (or canonical) parameters 

• a function referred to as a sufficient statistic

• a function of x (it is less important)

• a normalization constant (a partition function)

• Other common form:
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Exponential family: examples

• Bernoulli distribution

• Exponential family

• Parameters
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Exponential family: examples

• Bernoulli distribution

• Exponential family

• Parameters

logit function
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Exponential family: examples

• Univariate Gaussian distribution

• Exponential family

• Parameters
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Exponential family: examples

• Univariate Gaussian distribution

• Exponential family

• Parameters
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Exponential family

• For iid samples, the likelihood of data is

• Important:

– the dimensionality of the sufficient statistic remains the same 
with the number of samples
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Exponential family

• The log likelihood of data is

• Optimizing the loglikelihood

• For the ML estimate it must hold
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Exponential family

• Rewritting the gradient:

Exponential family

• Rewritting the gradient:

• Result:

• For the ML estimate the parameters       should be adjusted 
such that the expectation of the statistic t(x) is equal to the 
observed sample statistics
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Moments of the distribution

• For the exponential family

– The k-th moment of the statistic corresponds to the k-th
derivative of

– If x is a component of t(x) then we get the moments of the 
distribution by differentiating its corresponding natural 
parameter

• Example: Bernoulli

• Derivatives:
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Nonparametric Density Estimation

• Parametric distribution models are:

– restricted to specific functional forms, which may not 

always be suitable; 

– Example: modeling a multimodal distribution with a 

single, unimodal model.

• Nonparametric approaches:

– Do not make any strong assumption about the overall 

shape of the distribution being modelled.

vs

Nonparametric Methods

Histogram methods:

partition the data space into 

distinct bins with widths ∆i and 

count the number of 

observations, ni, in each bin.

• Often, the same width is used 

for all bins, ∆ i = ∆.

• ∆ acts as a smoothing 

parameter. 
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• Binning does not work well in the in a d-dimensional space, 
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Nonparametric Methods

• Binning does not work well in the in a d-dimensional space, 

• M bins in each dimension will require Md bins!

• Solution: 

• Build the estimates of p(x) by considering the data points 

in D  and how similar (or close) they are to x

• Example: Parzen window 

• As if we build a bin dynamically for x for which we 

need p(x)

x

K

Nonparametric Methods

• Assume observations drawn from 

a density p(x) and consider a 

small region R containing x such 

that

• The probability that K out of N 

observations lie inside R is  

Bin(K,N,P ) and if N is large

If the volume of R, V, is sufficiently 

small, p(x) is approximately 

constant over R and

Thus

Putting things together we get:
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Nonparametric methods: kernel methods

Solution 1: Estimate the probability for x based on the fixed 

volume V built around x 

• Fix V, estimate K from the data

Example: Parzen window
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Nonparametric methods: kernel methods

Kernel Density Estimation: 

• Parzen window: Let R be a hypercube centred on x that 

defines the kernel function: 

•It follows  that 

• and hence
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Nonparametric Methods: smooth kernels

To avoid discontinuities in p(x) because of sharp boundaries we 

can use a smooth kernel, e.g. a Gaussian

• Any kernel such that

• will work.

h acts as a smoother.
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Nonparametric Methods: kNN estimation

fix K, estimate V from the 

data 

Nearest Neighbour Density 

Estimation:

Consider a hyper-sphere 

centred on x and let it grow to 

a volume, V*, that includes K

of the given N data points. 

Then

K acts as a smoother

Solution 2: Estimate the probability for x based on a fixed 

count K for a variable volume V built around x
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Nonparametric vs Parametric Methods

Nonparametric models:

• More flexibility – no density model is needed

• But require storing the entire dataset

• and the computation is performed with all data examples.

Parametric models:

• Once fitted, only parameters need to be stored

• They are much more efficient in terms of computation

• But the model needs to be picked in advance


