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Exponential family

Exponential family:

 all probability mass / density functions that can be written in the

n
1(x)
h(x)

Z(m)

exponential normal form

M) = = hx) expn’i(x)]

Z(m)

a vector of natural (or canonical) parameters
a function referred to as a sufficient statistic
a function of x (it is less important)

a normalization constant (a partition function)
Z() = [ h(x) exp{n1(x) jdx

Other common form:

x| ) = h(x)exp[n’1(x)— A)] log Z(n) = A(n)
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Exponential family: examples

¢ Bernoulli distribution
p(x|m)y=n"A—7)"™"

_ exp{log(l f”jx +log(1 —;z)}

= exp {log(l — ﬂ)}exp{log(lijx}
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* Exponential family

S| = = h exp[nT1(x)]

Z(m)
¢ Parameters
n="2 H(x)="?
Z(n)="? h(x)="?

Exponential family: examples

¢ Bernoulli distribution
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* Exponential family

Fx|m) = ﬁh(x) exp[n”1(x)]

¢ Parameters
T
n =log N

<«— logit function 1(x) = x

Z(1|)=L=1+e’7 h(x) =1
-7




Exponential family: examples

¢ Univariate Gaussian distribution

1 1 ,
p(x | ,LI,O') = G\/E exp[—F(x—,u) 1

1 Yiad M 1 2}
= exp| — —log o |exps —x— X
N2 p[ 207 & ) p{az 207

* Exponential family

mﬂwm=géyunmb%m]

¢ Parameters

Z(=? h(x)="?

Exponential family: examples

¢ Univariate Gaussian disltribution )
x| p,o)= exp[—— (x — 10)°]
p(x| u,0) Ny 55

1 H H 1 2}
= exp| — —log o |exps —x— X
N2 p[ 207 & ) p{az 207

* Exponential family

mﬂwm=géyunmb%m]

¢ Parameters ) N
n= ,u/20'2 t(x):{ 2}
—1/20 X
2

H m 1
Z(n) = +logor=exps—————log(—2
Q) eXp{zG2 g } Xp{ y— g( 772)}

7,
h(x)=1/27




Exponential family
* For iid samples, the likelihood of data is

P(D|m)= ﬁp(x,- |w) = ﬁh(xi)exp['l”(xi) ~ 4]
= {H h(x; )} eXp{i n'u(x,) - A(n)}
= {ﬁ h(x, )} exp[nT(Zn: (X, )j — nA(‘l)}

* Important:

— the dimensionality of the sufficient statistic remains the same
with the number of samples

Exponential family
* The log likelihood of data is

1D = log[li[ Hx, )} exp{nf(i r(xi)j - nA(n)}

= log{li[ h(x, )} + {nT (i‘,t(xi )j - nA(n)}

* Optimizing the loglikelihood
i=1

¢ For the ML estimate it must hold

v, A(n) =%(ir(xi)j




Exponential family
* Rewritting the gradient:

Exponential family
* Rewritting the gradient:
vV, A=V, log Z(m) =V, log Ih(x) exp{nTt(X)}dx
B It(x)h(x) exp{nTt(x)}dx
- I h(x) exp{nTt(x)}dx
Y, A() = [ 1()R(x) exp{n”1(x) — A() feix
VoA = E(1(x))

" Result E(z@))%[it(x»j

* For the ML estimate the parameters 1 should be adjusted
such that the expectation of the statistic t(x) is equal to the
observed sample statistics

V.,Am)




Moments of the distribution

* For the exponential family
— The k-th moment of the statistic corresponds to the k-th
derivative of A(m)
— If x is a component of t(x) then we get the moments of the
distribution by differentiating its corresponding natural
parameter

* Example: Bernoulli p(x|7) = exp{log[1 z jx+log(1—7r)}
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A(n) = log " ! =log(1+e")

¢ Derivatives:
n
A _ 0y @1
on on (+e") (1+e™)
0A(M) _i 1

= =(l-
on®  on(l+e™) (1=-7)

Non-parametric density estimation
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Nonparametric Density Estimation

e Parametric distribution models are:

— restricted to specific functional forms, which may not
always be suitable;

— Example: modeling a multimodal distribution with a
single, unimodal model.

AN A A

* Nonparametric approaches:

— Do not make any strong assumption about the overall
shape of the distribution being modelled.

Nonparametric Methods

Histogram methods:
partition the data space into

W

distinct bins with widths A; and sl
count the number of o -
observations, n;, in each bin. .. s
A =008
— ni .
b NAI' 0() 0.5
* Often, the same width is used a0 -
for all bins, A ; = A. . — F
0 05

* A acts as a smoothing
parameter.

* Binning does not work well in the in a d-dimensional space,




Nonparametric Methods

* Binning does not work well in the in a d-dimensional space,
M bins in each dimension will require M9 bins!
* Solution:
* Build the estimates of p(x) by considering the data points
in D and how similar (or close) they are to x
* Example: Parzen window

* As if we build a bin dynamically for x for which we
need p(x)

Nonparametric Methods

* Assume observations drawn from
a density p(x) and consider a
small region R containing x such

If the volume of R, V, is sufficiently
small, p(x) is approximately
constant over R and

that ~
P Ip(x)dx P=px)V
R P
p(x)
R
R Thus P
e The probability that K out of N p(x)=—

. M . |4
observations lie inside R is

Bin(K,N,P ) and if N is large
K = NP

P
K
) xX)=——
M POI=Ny

R

Putting things together we get:




Nonparametric methods: kernel methods

Solution 1: Estimate the probability for x based on the fixed

volume V built around x

K
p(x)= W

* Fix V, estimate K from the data

Example: Parzen window

h
* ° OK ° )
- o | o °.<\.\\.
° X
° :o °

Nonparametric methods: kernel methods

Kernel Density Estimation:

* Parzen window: Let R be a hypercube centred on X that
defines the kernel function:

k(x—xnj 1 |(x,—x)|/h<1/2  i=1,...D

0 otherwise
h
It follows that N e . <. "
S G I LA
. X
 and hence . ©°

K 1 &, (x—x
= — = k n
P() NV NthZ:‘ [ h j




Nonparametric Methods: smooth kernels

To avoid discontinuities in p(x) because of sharp boundaries we
can use a smooth kernel, e¢.g. a Gaussian

1S | I x—x, |’
p(X)_Fz(Zﬂhz)D/z "Xp|:_ e :|

n=1

I — 0.005 |
* Any kernel such that
y Lmhag
> 0 05 1
k(w)=0 ) h=0.07
[ k@)du =1 i P W
. % 0.5 1
+ will work. Y |
0 05 1

h acts as a smoother.

Nonparametric Methods: KNN estimation

Solution 2: Estimate the probability for x based on a fixed
count K for a variable volume V built around x
&)

fix K, estimate V from the
data

Nearest Neighbour Density
Estimation:

Consider a hyper-sphere
centred on X and let it grow to
a volume, V*, that includes K
of the given N data points. — . &
Then 0 0.5

K K acts as a smoother

NV*

—

p(x) =
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Nonparametric vs Parametric Methods

Nonparametric models:
* More flexibility — no density model is needed
* But require storing the entire dataset

» and the computation is performed with all data examples.

Parametric models:
* Once fitted, only parameters need to be stored
» They are much more efficient in terms of computation

* But the model needs to be picked in advance
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