CS 2750 Machine Learning Lecture 7

Density estimation III

Milos Hauskrecht <u>milos@pitt.edu</u> 5329 Sennott Square

Exponential family
Exponential family:
• all probability mass / density functions that can be written in the exponential normal form
$f(\mathbf{x} \mid \mathbf{\eta}) = \frac{1}{Z(\mathbf{\eta})} h(\mathbf{x}) \exp\left[\mathbf{\eta}^{T} t(\mathbf{x})\right]$
• η a vector of natural (or canonical) parameters
• $t(\mathbf{x})$ a function referred to as a sufficient statistic
• $h(\mathbf{x})$ a function of x (it is less important)
• $Z(\mathbf{\eta})$ a normalization constant (a partition function)
$Z(\mathbf{\eta}) = \int h(\mathbf{x}) \exp\{\mathbf{\eta}^T t(\mathbf{x})\} d\mathbf{x}$
• Other common form:
$f(\mathbf{x} \mid \mathbf{\eta}) = h(\mathbf{x}) \exp\left[\mathbf{\eta}^T t(\mathbf{x}) - A(\mathbf{\eta})\right] \qquad \log Z(\mathbf{\eta}) = A(\mathbf{\eta})$

Nonparametric vs Parametric Methods

Nonparametric models:

- More flexibility no density model is needed
- But require storing the entire dataset
- and the computation is performed with all data examples.

Parametric models:

- Once fitted, only parameters need to be stored
- They are much more efficient in terms of computation
- But the model needs to be picked in advance