CS 2750 Machine Learning

Reinforcement learning

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Reinforcement learning

- We want to learn a control policy: $\pi: X \rightarrow A$
- We see examples of \mathbf{x} (but outputs a are not given)
- Instead of a we get a feedback r (reinforcement, reward) from a critic quantifying how good the selected output was

- The reinforcements may not be deterministic
- Goal: find $\pi: X \rightarrow A$ with the best expected reinforcements

Gambling example

- Game: 3 biased coins
- The coin to be tossed is selected randomly from the three coin options. The agent always sees which coin is going to be played next. The agent makes a bet on either a head or a tail with a wage of $\$ 1$. If after the coin toss, the outcome agrees with the bet, the agent wins $\$ 1$, otherwise it looses $\$ 1$
- RL model:
- Input: X - a coin chosen for the next toss,
- Action: A - choice of head or tail the agent bets on,
- Reinforcements: $\{1,-1\}$
- A policy $\pi: X \rightarrow A$

Example: $\pi: \left\lvert\, \begin{gathered}\text { Coin1 }\end{gathered} \rightarrow\right.$ head Coin2 \rightarrow tail
Coin3 \rightarrow head

Gambling example

- RL model:
- Input: X - a coin chosen for the next toss,
- Action: A - choice of head or tail the agent bets on,
- Reinforcements: $\{1,-1\}$
- A policy $\pi:\left|\begin{array}{l}\text { Coin1 } \rightarrow \text { head } \\ \text { Coin2 } \rightarrow \text { tail } \\ \text { Coin3 } \rightarrow \text { head }\end{array}\right|$
- Learning goal: find the optimal policy

$$
\pi^{*}: X \rightarrow A
$$

maximizing future expected profits
$E\left(\sum_{t=0}^{T} \gamma^{t} r_{t}\right) \quad \begin{aligned} & 0 \leq \gamma<1 \\ & \text { a discount }\end{aligned}$

Expected rewards

- Expected rewards for $\pi: X \rightarrow A$

Run 1

Run 2

Run 3

$E\left(\sum_{t=0}^{T} r_{t}\right)$
Expectation over many possible reward trajectories for $\pi: X \rightarrow A$

Expected discounted rewards

- Expected discounting rewards for $\pi: X \rightarrow A$
- Discounting with $0 \leq \gamma<1$ (future value of money) No discounting:

Run 1

Discounting

Run 1

$E\left(\sum_{t=0}^{T} \gamma^{t} r_{t}\right) \quad \begin{aligned} & \text { Expectation over many possible discounted } \\ & \text { reward trajectories for } \pi: X \rightarrow A\end{aligned}$

RL learning: objective functions

- Objective:

Find a mapping $\pi^{*}: X \rightarrow A$
That maximizes some combination of future reinforcements (rewards) received over time

- Valuation models (quantify how good the mapping is):
- Finite horizon models

$$
\begin{array}{ll}
E\left(\sum_{t=0}^{T} r_{t}\right) & \text { Time horizon: } T>0 \\
E\left(\sum_{t=0}^{T} \gamma^{t} r_{t}\right) & \text { Discount factor: } 0 \leq \gamma<1
\end{array}
$$

- Infinite horizon discounted model

$$
\begin{array}{lr}
E\left(\sum_{t=0}^{\infty} \gamma^{t} r_{t}\right) & \text { Discount fac } \\
\text { verage reward } & \lim _{T \rightarrow \infty} \frac{1}{T} E\left(\sum_{t=0}^{T} r_{t}\right)
\end{array}
$$

Agent navigation example

- Agent navigation in the maze:
- 4 moves in compass directions
- Effects of moves are stochastic - we may wind up in other than intended location with a non-zero probability
- Objective: learn how to reach the goal state in the shortest expected time

Agent navigation example

- The RL model:
- Input: X - a position of an agent
- Output: A -the next move
- Reinforcements: R
- -1 for each move

- +100 for reaching the goal
- A policy: $\pi: X \rightarrow A$

$$
\begin{array}{l|l}
\pi: & \begin{array}{l}
\text { Position } 1 \longrightarrow \text { right } \\
\text { Position } 2 \longrightarrow \text { right } \\
\\
\\
\\
\text { Position } 20 \longrightarrow \text { left }
\end{array}
\end{array}
$$

- Goal: find the policy maximizing future expected rewards

$$
E\left(\sum_{t=0}^{\infty} \gamma^{t} r_{t}\right) \quad 0 \leq \gamma<1
$$

Exploration vs. Exploitation in RL

- The (learner) actively interacts with the environment:
- At the beginning the learner does not know anything about the environment
- It gradually gains the experience and learns how to react to the environment
- Dilemma (exploration-exploitation):
- After some number of steps, should I select the best current choice (exploitation) or try to learn more about the environment (exploration)?
- Exploitation may involve the selection of a sub-optimal action and prevent the learning of the optimal choice
- Exploration may spend to much time on trying bad currently suboptimal actions

Effects of actions on the environment

Effect of actions on the environment (next input \mathbf{x} to be seen)

- No effect. The distribution over possible \mathbf{x} is fixed and independent of past actions. The rewards received depend only on the state \mathbf{x} and action chosen. The are seen after the action.
- Actions may effect the environment and next inputs \mathbf{x}. The distribution of \mathbf{x} can change due to past actions; the rewards related to the action can be seen with some delay.

Leads to two forms of reinforcement learning:

- Learning with immediate rewards
- 3 coin example

- Learning with delayed rewards
- Agent navigation example;
move choices affect the state of the environment (position ehanges), a big reward at the goal state is delayed

RL with immediate rewards

- Game: 3 biased coins

- The coin to be tossed is selected randomly from the three coin options. The agent always sees which coin is going to be played next. The agent makes a bet on either a head or a tail with a wage of $\$ 1$. If after the coin toss, the outcome agrees with the bet, the agent wins $\$ 1$, otherwise it looses $\$ 1$
- RL model:
- Input: X - a coin chosen for the next toss
- Action: A - head or tail the agent bets on
- Reinforcements: $\{1,-1\} \quad$ (\$1 either won or lost)
- Learning goal: find the optimal policy $\pi^{*}: X \rightarrow A$ maximizing the future expected profits over time $E\left(\sum_{t=0}^{\infty} \gamma^{t} r_{t}\right) \quad 0 \leq \gamma<1$ a discount factor

RL with immediate rewards

- Expected reward
- Immediate reward case:

$$
E\left(\sum_{t=0}^{\infty} \gamma^{t} r_{t}\right) \quad 0 \leq \gamma<1
$$

- Reward depends only on \mathbf{x} and the action choice
- The action does not affect the environment and hence future inputs (states) and future rewards:

$$
\begin{aligned}
& E\left(\sum_{t=0}^{\infty} \gamma^{t} r_{t}\right)=E\left(r_{0}\right)+E\left(\gamma r_{1}\right)+E\left(\gamma^{2} r_{2}\right)+\ldots \\
& \quad r_{0}, r_{1}, r_{2} \cdots \quad \text { Rewards for every step of the game }
\end{aligned}
$$

- Expected one step reward for input \mathbf{x} (coin to play next) and the choice $a: R(\mathbf{x}, a)$

RL with immediate rewards

Immediate reward case:

- Reward for input \mathbf{x} and the action choice a may vary
- Expected reward for the input x and choice $a: R(\mathbf{x}, a)$
- For the coin bet problem it is:

$$
R\left(\mathbf{x}, a_{i}\right)=\sum_{j} r\left(\omega_{j} \mid a_{i}, \mathbf{x}\right) P\left(\omega_{j} \mid \mathbf{x}, a_{i}\right)
$$

ω_{j} : an outcome of the coin toss x
$r\left(\omega_{j} \mid a_{i}, \mathbf{x}\right)$: reward for an outcome and the bet made on \mathbf{x}

- Expected one step reward for a strategy
$R(\pi)=\sum_{x} R(\mathbf{x}, \pi(\mathbf{x})) P(\mathbf{x}) \quad \pi: X \rightarrow A$
$R(\pi)$ is the expected reward for $r_{0}, r_{1}, r_{2} \ldots$

RL with immediate rewards

- Expected reward

$$
E\left(\sum_{t=0}^{\infty} \gamma^{t} r_{t}\right)=E\left(r_{0}\right)+E\left(\gamma r_{1}\right)+E\left(\gamma^{2} r_{2}\right)+\ldots
$$

- Optimizing the expected reward :

$$
\begin{aligned}
& \max _{\pi} E\left(\sum_{t=0}^{\infty} \gamma^{t} r_{t}\right)=\max _{\pi} \sum_{t=0}^{\infty} \gamma^{t} E\left(r_{t}\right)=\max _{\pi} \sum_{t=0}^{\infty} \gamma^{t} R(\pi)=\max _{\pi} R(\pi)\left(\sum_{t=0}^{\infty} \gamma^{t}\right) \\
& =\left(\sum_{t=0}^{\infty} \gamma^{t}\right) \max _{\pi} R(\pi) \\
& \max _{\pi} R(\pi)=\max _{\pi} \sum_{x} R(\mathbf{x}, \pi(\mathbf{x})) P(\mathbf{x})=\sum_{x} P(\mathbf{x})\left[\max _{\pi(\mathbf{x})} R(\mathbf{x}, \pi(\mathbf{x}))\right]
\end{aligned}
$$

Optimal strategy: $\pi^{*}: X \rightarrow A$

$$
\pi^{*}(\mathbf{x})=\arg \max R(\mathbf{x}, a)
$$

RL with immediate rewards

- We know that $\pi^{*}(\mathbf{x})=\arg \max R(\mathbf{x}, a)$
- Problem: In the RL framework we do not know $R(\mathbf{x}, a)$
- The expected reward for performing action a at input \mathbf{x}
- How to estimate $R(\mathbf{x}, a)$?

RL with immediate rewards

- Problem: In the RL framework we do not know $R(\mathbf{x}, a)$
- The expected reward for performing action a at input \mathbf{x}
- Solution:
- For each input \mathbf{x} try different actions a
- Estimate $R(\mathbf{x}, a)$ using the average of observed rewards

$$
\widetilde{R}(\mathbf{x}, a)=\frac{1}{N_{x, a}} \sum_{i=1}^{N_{x, a}} r_{i}^{x, a}
$$

- Action choice $\pi(\mathbf{x})=\arg \max \widetilde{R}(\mathbf{x}, a)$
- Accuracy of the estimate: statistics (Hoeffding's bound)

$$
P(|\widetilde{R}(\mathbf{x}, a)-R(\mathbf{x}, a)| \geq \varepsilon) \leq \exp \left[-\frac{2 \varepsilon^{2} N_{x, a}}{\left(r_{\max }-r_{\min }\right)^{2}}\right] \leq \delta
$$

- Number of samples: $\quad N_{x, a} \geq \frac{\left(r_{\text {max }}-r_{\text {min }}\right)^{2}}{2 \varepsilon^{2}} \ln \frac{1}{\delta}$

RL with immediate rewards

- On-line (stochastic approximation)
- An alternative way to estimate $R(\mathbf{x}, a)$
- Idea:
- choose action a for input \mathbf{x} and observe a reward $r^{x, a}$
- Update an estimate in every step i

$$
\widetilde{R}(\mathbf{x}, a)^{(i)} \leftarrow(1-\alpha(i)) \widetilde{R}(\mathbf{x}, a)^{(i-1)}+\alpha(i) r_{i}^{x, a} \quad \alpha(i) \text { - a learning rate }
$$

- Convergence property: The approximation converges in the limit for an appropriate learning rate schedule.
- Assume: $\alpha(n(x, a))$ - is a learning rate for nth trial of (x, a) pair
- Then the converge is assured if:

1. $\sum_{i=1}^{\infty} \alpha(i)=\infty$
2. $\quad \sum_{i=1}^{\infty} \alpha(i)^{2}<\infty$

RL with immediate rewards

- At any step in time i during the experiment we have estimates of expected rewards for each (coin, action) pair:
$\widetilde{R}($ coin1, head $){ }^{(i)}$
$\widetilde{R}(\text { coin } 1, \text { tail })^{(i)}$
$\widetilde{R}(\text { coin } 2, \text { head })^{(i)}$
$\widetilde{R}(\text { coin } 2, \text { tail })^{(i)}$
$\widetilde{R}(\text { coin } 3, \text { head })^{(i)}$
$\widetilde{R}(\text { coin3, tail })^{(i)}$
- Assume the next coin to play in step $(i+1)$ is coin 2 and we pick head as our bet. Then we update $\widetilde{R}(\text { coin } 2 \text {, head })^{(i+1)}$ using the observed reward and one of the update strategy above, and keep the reward estimates for the remaining (coin, action) pairs unchanged, e.g. $\quad \widetilde{R}(\text { coin } 2, \text { tail })^{(i+1)}=\widetilde{R}($ coin 2, tail $){ }^{(i)}$

Exploration vs. Exploitation

- In the RL framework
- the (learner) actively interacts with the environment and choses the action to play for the current input \mathbf{x}
- Also at any point in time it has an estimate of $\widetilde{R}(\mathbf{x}, a)$ for any (input,action) pair
- Dilemma for choosing the action to play for x :
- Should the learner choose the current best choice of action (exploitation)

$$
\hat{\pi}(\mathbf{x})=\underset{a \in A}{\arg \max } \tilde{R}(\mathbf{x}, a)
$$

- Or choose some other action a which may help to improve its $\widetilde{R}(\mathbf{x}, a)$ estimate (exploration)
This dilemma is called exploration/exploitation dilemma
- Different exploration/exploitation strategies exist

Exploration vs. Exploitation

- Uniform exploration: Exploration parameter $0 \leq \varepsilon \leq 1$
- Choose the "current" best choice with probability $1-\varepsilon$

$$
\hat{\pi}(\mathbf{x})=\underset{a \in A}{\arg \max } \tilde{R}(\mathbf{x}, a)
$$

- All other choices are selected with a uniform probability
$\frac{\varepsilon}{|A|-1}$
- Boltzman exploration
- The action is chosen randomly but proportionally to its current expected reward estimate

$$
p(a \mid \mathbf{x})=\frac{\exp [\widetilde{R}(x, a) / T]}{\sum_{a^{\prime} \in A} \exp \left[\widetilde{R}\left(x, a^{\prime}\right) / T\right]}
$$

T - is temperature parameter. What does it do?

