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Learning with multiple models

We know how to build different classification or regression
models from data

* Question:

— Is it possible to learn and combine multiple
(classification/regression) models and improve their
predictive performance ?

* Answer: yes
* There are different ways of how to do it...
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Learning with multiple models

* Question:

— Is it possible to learn and combine multiple
(classification/regression) models and improve their
predictive performance ?

» There are different ways of how to do it...

* Assume you have models M1, M2, ... Mk
Approach 1: use different models (classifiers, regressors) to
cover the different parts of the input (x) space

Approach 2: use different models (classifiers, regressors) that
cover the complete input (x) space, and combine their
predictions

Approach 1

 Recall the decision tree:
— It partitions the input space to regions
— It picks the class independently in every region
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Approach 1

* Recall the decision tree:
— It partitions the input space to regions
— picks the class independently

« What if we define a more general partitions of the input
space and learn a model specific to these partitions
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Learning with multiple models: Approach 1

Define a more general partitions of the input space and learn
a model specific to these partitions

Example:
* 2 linear functions covering
two regions of the input space

Mixture of expert model:

» Expert = learner (model)

« Different input regions covered with a different learner/model
* A “soft” switching between learners




Mixture of experts model

» Gating network : decides what expert to use
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Mixture of experts model

+ Gating network : decides what expert to use
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Learning mixture of experts

 Learning consists of two tasks:
— Learn the parameters of individual expert networks
— Learn the parameters of the gating (switching) network
« Decides where to make a split
« Assume: gating functions give probabilitiesk

0<g,(x), 9,(X),--9 () <1 2.9.09=1
y= Z g, (%) f, (x)

Based on the probability we partition the space
— partitions belongs to different experts
« How to model the gating network?
— A multi-way classifier model:
+ softmax model

Learning mixture of experts

» Assume we have a set of k linear experts
y, = WiTX +& &~N(0,0) (Note: bias terms are hidden in x)
» Assume a softmax gating network
T
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Learning mixture of experts

» Assume we have a set of linear experts
Y, =W, X+& &~N(0,5) (Note: bias terms are hidden in x)

+ Assume a softmax gating network
T
exp(n, X
gi (X) — - p(nl )
> exp(n,’x)
u=1l

* Likelihood of y (linear regression — assume errors for different
experts are normally distributed with the same variance)
k

P(y[x,W,n) =2 P(; | X, n)p(y | X, &, W)
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Learning mixture of experts

Learning of parameters of expert models:
On-line update rule for parameters w; of expert i
— If we know the expert that is responsible for x
Wy <— W, + o (Y — W, X)X,
— If we do not know the expert

7
W <— W;; + o (Y — w0 X)X

h, - responsibility of the ith expert = a kind of posterior

h (X, y) = kgi(x)lo(ylx,wi,\,\,) _ g‘(x)ex"(‘”ZHy—wfo)

2. 9. )Py % @, W) k gu(X)exp(—1/2Hy—quxH2)
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g;(x) -aprior exp(...) -alikelihood




Learning mixtures of experts

Learning of parameters of the gating/switching network:
« On-line learning of gating network parameters n,

77 <1 + B (0 (X, ¥) — 9; (X)) X;

 The learning with conditional mixtures can be extended to
learning of parameters of an arbitrary expert network

— e.g. logistic regression, multilayer neural network

Learning with multiple models: Approach 2

« Approach 2: use multiple models (classifiers, regressors) that
cover the complete input (x) space and combines their outputs

« Committee machines:
— Combine predictions of all models to produce the output
— Regression: averaging
— Classification: a majority vote
— Goal: Improve the accuracy of the ‘base’ model

Methods:
» Bagging ( the same base models)
* Boosting (the same base models)
« Stacking (different base model) not covered




Bagging (Bootstrap Aggregating)

+ Given:
— Training set of N examples
— A base learning model (e.g. decision tree, neural network,
.2
» Method:
— Train multiple (K) base models on slightly different datasets
— Predict (test) by averaging the results of k models
+ Goal:
— Improve the accuracy of one model by using its multiple
copies
— Average of misclassification errors on different data splits
gives a better estimate of the predictive ability of a learning
method

Bagging algorithm

« Training
* For each model M1, M2, ... Mk
« Randomly sample with replacement N samples from the
training set (bootstrap)

* Train a chosen “base model” (e.g. neural network,

decision tree) on the samples
Data

N
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Bagging algorithm

« Training
* For each model M1, M2, ... Mk

« Randomly sample with replacement N samples from the
training set

* Train a chosen “base model” (e.g. neural network,
decision tree) on the samples

e Test
— For each test example
» Run all base models M1, M2, ... Mk
* Predict by combining results of all T trained models:
— Regression: averaging
— Classification: a majority vote

Class decision via majority voting

Test examples
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Analysis of Bagging

» Expected error= Bias+Variance

— Expected error is the expected discrepancy between the
estimated and true function

E[(f(x)-E[f(x)])?]

— Bias is a squared discrepancy between averaged
estimated and true function

(E[f COl-lr (x)))?

— Variance is an expected divergence of the estimated
function vs. its average value

E[(f(x)—E[f(x)])Z]

When Bagging works?
Under-fitting and over-fitting

+ Under-fitting:
— High bias (models are not 15— —
accurate) A Samples
— Small variance (smaller

influence of examples in the *| |
training set) o /\ 7

in

» Over-fitting: s

— Small bias (models flexible |
enough to fit well to training
data) 15 Underfitting

— Large variance (models 2 Overfitting
depend very much on the e
training set)
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Averaging decreases variance

+ Example
— Assume a random variable x with a N(u,c2) distribution

— Case 1: we draw one example/measurement x; and use it to
estimate the mean p’ = x;

 The expected mean of the estimate is
« The variance of the mean estimate is Var(x;)=c2

— Case 2: a variable x is measured K times (X;,X,,...x,) and
the mean is estimated as: p’= (x;+X,+...+x,)/K,

 The expected mean of the estimate is still n
+ But, the variance of the mean estimate is smaller:
—[Var(x,)+...Var(x,)//K*=Ko?/ K2 = ?/K
 Relation to bagging: Bagging is a kind of averaging!

When Bagging works

« Main property of Bagging (proof omitted)
— Bagging decreases variance of the base model without
changing the bias!!!
— Why? averaging!
» Bagging typically helps
— When applied with an over-fitted base model
» High dependency on actual training data
» Example: fully grown decision trees
It does not help much

— High bias. When the base model is robust to the
changes in the training data (due to sampling)
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