CS 2750 Machine Learning

 Lecture 19
Dimensionality reduction Feature selection

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Dimensionality reduction. Motivation.

- ML methods are sensitive to the dimensionality d of data
- Question: Is there a lower dimensional representation of the data that captures well its characteristics?
- Objective of dimensionality reduction:
- Find a lower dimensional representation of data
- Two learning problems:
- Supervised $\quad D=\left\{\left(\mathbf{x}_{1}, y_{1}\right),\left(\mathbf{x}_{2}, y_{2}\right), . .,\left(\mathbf{x}_{n}, y_{n}\right)\right\}$ $\mathbf{x}_{i}=\left(x_{i}^{1}, x_{i}^{2}, . ., x_{i}^{d}\right)$
- Unsupervised

$$
D=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}\right\}
$$

$$
\mathbf{x}_{i}=\left(x_{i}^{1}, x_{i}^{2}, . ., x_{i}^{d}\right)
$$

- Goal: replace $\mathbf{x}_{i}=\left(x_{i}^{1}, x_{i}^{2}, \ldots, x_{i}^{d}\right)$ with $\quad \mathbf{x}_{i}{ }^{\prime}$ of dimensionality $\mathbf{d}^{\prime}<\mathbf{d}$

Dimensionality reduction

- Solutions:
- Selection of a smaller subset of inputs (features) from a large set of inputs; train classifier on the reduced input set
- Combination of high dimensional inputs to a smaller set of features $\phi_{k}(\mathbf{x})$; train classifier on new features
\mathbf{X}
 selection
 combination

Task-dependent feature selection

Assume: Classification problem:
$-\mathbf{x}$ - input vector, y - output
Objective: Find a subset of inputs/features that gives/preserves most of the output prediction capabilities
Selection approaches:

- Filtering approaches
- Filter out features with small predictive potential
- Done before classification; typically uses univariate analysis
- Wrapper approaches
- Select features that directly optimize the accuracy of the multivariate classifier
- Embedded methods
- Feature selection and learning closely tied in the method
- Regularization methods, decision tree methods

Feature selection through filtering

Assume:

Classification problem:

\mathbf{x} - input vector, y - output

- How to select the features/inputs?

For each input x_{i}

- Calculate a score reflecting how well x_{i} predicts the output y alone
- Pick the inputs with the best scores (or equivalently eliminate/filter the inputs with the worst scores)

Feature scoring for classification

- Scores for measuring the differential expression
- T-Test score (Baldi \& Long)
- Based on the test that two groups come from the same population
- Null hypothesis: is mean of class $0=$ mean of class 1

Feature scoring for classification

Scores for measuring the differential expression

- Fisher Score

$$
\operatorname{Fisher}(i)=\frac{\left(\mu_{i}^{(+)}-\mu_{i}^{(-)}\right)^{2}}{\sigma_{i}^{(+)^{2}}+\sigma_{i}^{(-)^{2}}}
$$

- AUROC score: Area under Receiver Operating Characteristic curve

Feature scoring

- Correlation coefficients
- Measures linear dependences

$$
\rho\left(x_{k}, y\right)=\frac{\operatorname{Cov}\left(x_{k}, y\right)}{\sqrt{\operatorname{Var}\left(x_{k}\right) \operatorname{Var}(y)}}
$$

- Mutual information
- Measures dependences
- Needs discretized input values
$I\left(x_{k}, y\right)=\sum_{i} \sum_{j} \widetilde{P}\left(x_{k}=j, y=i\right) \log _{2} \frac{\widetilde{P}\left(x_{k}=j, y=i\right)}{\widetilde{P}\left(x_{k}=j\right) \widetilde{P}(y=i)}$

Feature/input dependences

Univariate score assumptions:

- Only one input and its effect on y is incorporated in the score
- Effects of two features on y are considered to be independent

Correlation based feature selection

- A partial solution to the above problem
- Idea: good feature subsets contain features that are highly correlated with the class but independent of each other
- Assume a set of features \mathbf{S} of size d. Then

$$
M(S)=\frac{d \bar{r}_{y x}}{\sqrt{d+d(d+1) \bar{r}_{x x}}}
$$

- Average correlation between x and class y $\bar{r}_{y x}$
- Average correlation between pairs of xs $\bar{r}_{x x}$

Feature selection: low sample size

Problems:

- Many inputs and low sample size
- if many random features, and not many instances we can learn from, the features with a good differentially expressed score may arise simply by chance
- The probability of this happening can be quite large
- Techniques to address the problem:
- reduce FDR (False discovery rate) and
- FWER (Family wise error).

Feature selection: wrappers

Wrapper approach:

- The input/feature selection is driven by the prediction accuracy of the classifier (regressor) we actually want to built

How to find the appropriate feature subset S ?

- For d inputs/features there are $2^{\text {d }}$ different feature subsets
- Idea: Greedy search in the space of classifiers
- Gradually add features improving the quality of the model
- Gradually remove features that effect the accuracy the least
- Score should reflect the accuracy of the classifier (error) and also prevent overfitting
- Standard way to measure the quality of the model:
- Internal cross-validation (k-fold cross validation)

Internal cross-validation

- Split train set: to internal train and test sets
- Internal train set: train different models (defined e.g. on different subsets of features)
- Internal test set/s: estimate the generalization error and select the best model among possible models
- Internal cross-validation (\boldsymbol{k}-fold):
- Divide the train data into m equal partitions (of size N / k)
- Hold out one partition for validation, train the classifiers on the rest of data
- Repeat such that every partition is held out once
- The estimate of the generalization error of the learner is the mean of errors of on all partitions

Feature selection: wrappers

- Example: Greedy (forward) search:
- Assume a logistic regression model

Start with a simple model: $\quad p(y=1 \mid \mathbf{x}, \mathbf{w})=g\left(w_{o}\right)$
Choose feature x_{i} with the best error (in the internal step)

$$
p(y=1 \mid \mathbf{x}, \mathbf{w})=g\left(w_{o}+w_{i} x_{i}\right)
$$

Choose feature x_{j} with the best error (in the internal step)

$$
p(y=1 \mid \mathbf{x}, \mathbf{w})=g\left(w_{o}+w_{i} x_{i}+w_{j} x_{j}\right)
$$

Etc.
When to stop?
Goal: Stop adding features when the internal error on the data stops improving

Embedded methods

Feature selection + model learning done jointly

- Examples of embedded methods:
- Regularized models
- Models of higher complexity are explicitly penalized leading to 'virtual' removal of inputs from the model
- Covers:
- Regularized logistic/linear regression
- Support vector machines
» Optimization of margins penalizes nonzero weights

$$
\underbrace{J_{n}(\mathbf{w}, D)}_{\begin{array}{l}
\text { Function } \\
\text { to optimize }
\end{array}}=\underbrace{L(\text { fit of the data) }}_{\text {Loss function }} \begin{aligned}
& L(\mathbf{w}, D)
\end{aligned} \underbrace{\text { penalty }}_{\text {Regularization }} \text { R(w)}
$$

- CART/Decision trees

Unsupervised dimensionality reduction

- Is there a lower dimensional representation of the data that captures well its characteristics?
- Assume:
- We have data $D=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, . ., \mathbf{x}_{\mathrm{N}}\right\}$ such that $\mathbf{x}_{i}=\left(x_{i}^{1}, x_{i}^{2}, . ., x_{i}^{d}\right)$
- Assume the dimension d of the data point \boldsymbol{x} is very large
- We want to analyze \boldsymbol{x}, there is no class label \boldsymbol{y}
- Our goal:
- Find a lower dimensional representation of data of dimension $d^{\prime}<d$

Principal component analysis (PCA)

Objective: We want to replace a high-dimensional input vector with a lower dimension vector (obtained by combining inputs)

- Different from the feature subset selection !!!

PCA:

- A linear transformation of d dimensional input x to M dimensional feature vector z such that $\quad M<d$

$$
\mathbf{z}=\mathbf{A} \mathbf{x}
$$

- Many different transformations exists, which one to pick?
- PCA -selects the linear transformation for which the retained variance is maximal
- Or, equivalently it is the linear transformation for which the sum of squares reconstruction cost is minimized

PCA: example

PCA
Projections to different axis

PCA

- PCA projection to the 2 dimensional space

PCA

- PCA projection to the 2 dimensional space

Principal component analysis (PCA)

- PCA:
- linear transformation of a d dimensional input \mathbf{x} to M dimensional vector \mathbf{z} such that $M<d$ under which the retained variance is maximal. Remember: no y is needed
- Fact:
- A vector \mathbf{x} can be represented using a set of orthonormal vectors \mathbf{u} (basis vectors)

$$
\mathbf{x}=\sum_{i=1}^{d} z_{i} \mathbf{u}_{i}
$$

- Leads to transformation of coordinates (from \mathbf{x} to \mathbf{z} using u's)

$$
\mathbf{U}=\left[\begin{array}{c}
\mathbf{u}_{1}^{T} \\
\mathbf{u}_{2}^{T} \\
. \cdot \\
\mathbf{u}_{d}^{T}
\end{array}\right]
$$

Principal component analysis (PCA)

- Fact: A vector \mathbf{x} can be represented using a set of orthonormal vectors \mathbf{u} (basis vectors)

$$
\mathbf{x}=\sum_{i=1}^{d} z_{i} \mathbf{u}_{i}
$$

- Leads to transformation of coordinates (from \mathbf{x} to \mathbf{z} using \mathbf{u} 's)

$$
z_{i}=\mathbf{u}_{i}^{T} \mathbf{x} \quad \mathbf{z}=\mathbf{U} \mathbf{x}
$$

Standard bases:
(1,0,0); (0,1,0); (0,0,1)

New bases: $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$

$$
\mathbf{U}=\left[\begin{array}{c}
\mathbf{u}_{1}^{T} \\
\mathbf{u}_{2}^{T} \\
. . \\
\mathbf{u}_{d}^{T}
\end{array}\right]
$$

PCA

- Idea: represent d-dimensional \mathbf{x}^{n} with an M-dimensional \mathbf{z}^{n} formed by subset of z_{i} coordinates for the bases defined by \mathbf{U}.

- Goal: We want to find:
(1) Basis vectors U and (2) a subset of basis of size M to keep
- This effectively replaces \mathbf{x}^{n} with its approximation $\widetilde{\mathbf{x}}^{n}$
$\mathbf{x}^{n}=\sum_{i=1}^{d} z_{i}{ }^{n} \mathbf{u}_{i} \quad \widetilde{\mathbf{x}}^{n}=\sum_{i=1}^{M} z_{i}{ }^{n} \mathbf{u}_{i}+\sum_{i=M+1}^{d} b_{i} \mathbf{u}_{i}$
b_{i} - constant and fixed for all data-points

PCA

- Goal: We want to find:

$$
z_{i}
$$

Basis vectors U and a subset of basis of size M to keep

$$
\mathbf{x}^{n}=\sum_{i=1}^{d} z_{i}{ }^{n} \mathbf{u}_{i} \quad \longrightarrow \quad \widetilde{\mathbf{x}}^{n}=\sum_{i=1}^{M} z_{i}{ }^{n} \mathbf{u}_{i}+\sum_{i=M+1}^{d} b_{i} \mathbf{u}_{i}
$$

b_{i} - constant and fixed for all data-points

- How to choose the best set of basis vectors?
- We want the subset that gives the best approximation of data x in the dataset on average (we use least squares fit)
Error for data entry $\mathbf{x}^{n} \quad \mathbf{x}^{n}-\widetilde{\mathbf{x}}^{n}=\sum_{i=M+1}^{d}\left(z_{i}^{n}-b_{i}\right) \mathbf{u}_{i}$
Reconstruction error

$$
E_{M}=\frac{1}{2} \sum_{n=1}^{N}\left\|\mathbf{x}^{n}-\widetilde{\mathbf{x}}^{n}\right\|=\frac{1}{2} \sum_{n=1}^{N} \sum_{i=M+1}^{d}\left(z_{i}^{n}-b_{i}\right)^{2}
$$

PCA

- Differentiate the error function with regard to all b_{i} and set equal to 0 we get:

$$
b_{i}=\frac{1}{N} \sum_{n=1}^{N} z_{i}^{n}=\mathbf{u}_{i}{ }^{T} \overline{\mathbf{x}} \quad \overline{\mathbf{x}}=\frac{1}{N} \sum_{n=1}^{N} \mathbf{x}^{n}
$$

- Then we can rewrite:

$$
E_{M}=\frac{1}{2} \sum_{i=M+1}^{d} \mathbf{u}_{i}{ }^{T} \boldsymbol{\Sigma} \mathbf{u}_{i} \quad \mathbf{\Sigma}=\sum_{n=1}^{N}\left(\mathbf{x}^{n}-\overline{\mathbf{x}}\right)\left(\mathbf{x}^{n}-\overline{\mathbf{x}}\right)^{T}
$$

- The error function is optimized when basis vectors satisfy:

$$
\Sigma \mathbf{u}_{i}=\lambda_{i} \mathbf{u}_{i} \quad E_{M}=\frac{1}{2} \sum_{i=M+1}^{d} \lambda_{i}
$$

The best M basis vectors: discard vectors with $d-M$ smallest eigenvalues (or keep vectors with M largest eigenvalues)
Eigenvector $\mathbf{u}_{i}-$ is called a principal component

PCA

- Once eigenvectors \mathbf{u}_{i} with largest eigenvalues are identified, they are used to transform the original d-dimensional data to M dimensions

- To find the "true" dimensionality of the data d ' we can just look at eigenvalues that contribute the most (small eigenvalues are disregarded)
- Problem: PCA is a linear method. The "true" dimensionality can be overestimated. There can be non-linear correlations.
- Modifications for nonlinearities: kernel PCA

Dimensionality reduction with neural nets

- PCA is limited to linear dimensionality reduction
- To do non-linear reductions we can use neural nets
- Auto-associative (or auto-encoder) network: a neural network with the same inputs and outputs (\boldsymbol{x})

- The middle layer corresponds to the reduced dimensions

Dimensionality reduction with neural nets

- Error criterion:

$$
E=\frac{1}{2} \sum_{n=1}^{N} \sum_{i=1}^{d}\left(y_{i}\left(x^{n}\right)-x^{n}\right)^{2}
$$

- Error measure tries to recover the original data through limited number of dimensions in the middle layer
- Non-linearities modeled through intermediate layers between the middle layer and input/output
- If no intermediate layers are used the model replicates PCA optimization through learning

Latent variable models

- Learning using unsupervised learning
- Dimensionality reduction via inference

Latent variables (s): Dimensionality k

Dimensionality reduction via inference

Observed variables x : real valued vars Dimensionality d

Cooperative vector quantizer

Model:

Latent var s_{i} :
\sim Bernoulli distribution parameter: π_{i}

$$
P\left(s_{i} \mid \pi_{i}\right)=\pi_{i}^{s_{i}}\left(1-\pi_{i}\right)^{1-s_{i}}
$$

s: k binary vars

x : d real valued vars

Observable variables x :

~ Normal distribution parameters: W, Σ $P(\mathbf{x} \mid \mathbf{s})=N(\mathbf{W s}, \Sigma)$
We assume $\Sigma=\sigma I$

$$
\mathbf{W}=\left(\begin{array}{llll}
w_{11} & w_{12} & . . & w_{1 k} \\
w_{21} & & & \\
& . . & & \\
w_{d 1} & . . & . . & w_{d k}
\end{array}\right)
$$

Joint for one instance of x and s :
$P(\mathbf{x}, \mathbf{s} \mid \Theta)=(2 \pi)^{-d / 2} \sigma^{-d / 2} \exp \left\{-\frac{1}{2 \sigma^{2}}(\mathbf{x}-\mathbf{W s})^{T}(\mathbf{x}-\mathbf{W s})\right\} \prod_{i=1}^{k} \pi_{i}^{s_{i}}\left(1-\pi_{i}\right)^{\left(1-s_{i}\right)}$

Dimensionality reduction through clustering

- Clustering algorithms
- group together "similar" instances in the data sample
- Dimensionality reduction based on clustering:
- Replace a high dimensional data entry with a cluster label
- Problem:
- Determistic clustering gives only one label per input
- May not be enough to represent the data for prediction
- Solutions:
- Clustering over subsets of input data
- Soft clustering (probability of a cluster is used directly)

Dimensionality reduction through clustering

- Soft clustering (e.g. mixture of Gaussians) attempts to cover all instances in the data sample with a small number of groups
- Each group is more or less responsible for a data entry (responsibility - a posterior of a group given the data entry)

Mixture of G. responsibility

$$
h_{i l}=\frac{\pi_{i} p\left(x_{l} \mid y_{l}=i\right)}{\sum_{\substack{u=1 \\ k}} \pi_{u} p\left(x_{l} \mid y_{l}=u\right)}
$$

- Dimensionality reduction based on soft clustering
- Replace a high dimensional data with the set of group posteriors
- Feed all posteriors to the learner e.g. linear regressor, classifier

Dimensionality reduction through clustering

- We can use the idea of soft clustering before applying regression/classification learning
- Two stage algorithms
- Learn the clustering
- Learn the classification
- Input clustering: \mathbf{x} (high dimensional)
- Output clustering (Input classifier): $p(c=i \mid \mathbf{x})$
- Output classifier: y
- Example: Networks with Radial Basis Functions (RBFs)
- Problem:
- Clustering learned based on $p(\mathbf{x})$ (disregards the target)
- Prediction based on $p(y \mid x)$

Multidimensional scaling

- Find a lower dimensional space projection such that the distances among data points are preserved
- Used in visualization - d-diminensional data transformed to 3D or 2D
- Dissimilarities before projection $\delta_{i, j}=\left\|x_{i}-x_{j}\right\|$
- Objective: Optimize points and their coordinates by fitting the dissimilarities afterwards
$\min _{\left\{x_{1}, x_{2}, \cdots x_{n}\right\}} \sum_{i<j}\left(\left\|x_{i}{ }^{\prime}-x_{j}{ }^{\prime}\right\|-\delta_{i j}\right)^{2}$

