CS 2750 Machine Learning Lecture 19

Dimensionality reduction Feature selection

Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square

Dimensionality reduction. Motivation.

- ML methods are sensitive to the dimensionality d of data
- Question: Is there a lower dimensional representation of the data that captures well its characteristics?
- Objective of dimensionality reduction:
 - Find a lower dimensional representation of data
- Two learning problems:
 - Supervised $D = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), ..., (\mathbf{x}_n, y_n)\}$

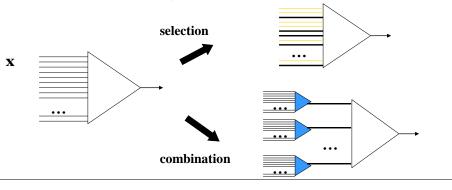
 $\mathbf{x}_i = (x_i^1, x_i^2, ..., x_i^d)$

- Unsupervised $D = \{\mathbf{x_1, x_2,...,x_n}\}$ $\mathbf{x}_i = (x_i^1, x_i^2, ..., x_i^d)$

• Goal: replace $\mathbf{x}_i = (x_i^1, x_i^2, ..., x_i^d)$ with \mathbf{x}_i ' of dimensionality d'< d

Dimensionality reduction

- Solutions:
 - Selection of a smaller subset of inputs (features) from a large set of inputs; train classifier on the reduced input set
 - Combination of high dimensional inputs to a smaller set of features $\phi_k(\mathbf{x})$; train classifier on new features



Task-dependent feature selection

Assume: Classification problem:

 $-\mathbf{x}$ - input vector, y - output

Objective: Find a subset of inputs/features that gives/preserves most of the output prediction capabilities

Selection approaches:

- Filtering approaches
 - Filter out features with small predictive potential
 - Done before classification; typically uses univariate analysis

Wrapper approaches

 Select features that directly optimize the accuracy of the multivariate classifier

Embedded methods

- Feature selection and learning closely tied in the method
- Regularization methods, decision tree methods

Feature selection through filtering

Assume:

Classification problem:

 \mathbf{x} – input vector, y - output

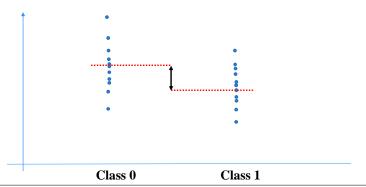
• How to select the features/inputs?

For each input x_i

- Calculate **a score** reflecting how well x_i predicts the output y alone
- Pick the inputs with the best scores
 (or equivalently eliminate/filter the inputs with the worst scores)

Feature scoring for classification

- Scores for measuring the differential expression
 - **T-Test score** (Baldi & Long)
 - Based on the test that two groups come from the same population
 - Null hypothesis: is mean of class 0 = mean of class 1

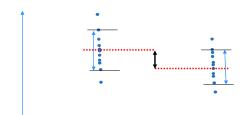


Feature scoring for classification

Scores for measuring the differential expression

• Fisher Score

Fisher(i) =
$$\frac{(\mu_i^{(+)} - \mu_i^{(-)})^2}{\sigma_i^{(+)^2} + \sigma_i^{(-)^2}}$$



Class 0

Class 1

• AUROC score: Area under Receiver Operating Characteristic curve

Feature scoring

- Correlation coefficients
 - Measures linear dependences

$$\rho(x_k, y) = \frac{Cov(x_k, y)}{\sqrt{Var(x_k)Var(y)}}$$

- Mutual information
 - Measures dependences
 - Needs discretized input values

$$I(x_k, y) = \sum_{i} \sum_{j} \widetilde{P}(x_k = j, y = i) \log_2 \frac{\widetilde{P}(x_k = j, y = i)}{\widetilde{P}(x_k = j)\widetilde{P}(y = i)}$$

Feature/input dependences

Univariate score assumptions:

- Only one input and its effect on y is incorporated in the score
- Effects of two features on y are considered to be independent

Correlation based feature selection

- A partial solution to the above problem
- Idea: good feature subsets contain features that are highly correlated with the class but independent of each other
- Assume a set of features S of size d. Then

$$M(S) = \frac{d\overline{r}_{yx}}{\sqrt{d + d(d+1)\overline{r}_{xx}}}$$

- Average correlation between x and class y \bar{r}_{vx}
- Average correlation between pairs of xs \bar{r}_{xx}

Feature selection: low sample size

Problems:

- · Many inputs and low sample size
 - if many random features, and not many instances we can learn from, the features with a good differentially expressed score may arise simply by chance
 - The probability of this happening can be quite large
- Techniques to address the problem:
 - reduce **FDR** (False discovery rate) and
 - **FWER** (Family wise error).

Feature selection: wrappers

Wrapper approach:

• The input/feature selection is driven by the prediction accuracy of the classifier (regressor) we actually want to built

How to find the appropriate feature subset S?

- For *d* inputs/features there are 2^d different feature subsets
- Idea: Greedy search in the space of classifiers
 - Gradually add features improving the quality of the model
 - Gradually remove features that effect the accuracy the least
 - Score should reflect the accuracy of the classifier (error) and also prevent overfitting
- Standard way to measure the quality of the model:
 - Internal cross-validation (k-fold cross validation)

Internal cross-validation

- Split train set: to internal train and test sets
- Internal train set: train different models (defined e.g. on different subsets of features)
- Internal test set/s: estimate the generalization error and select the best model among possible models
- Internal cross-validation (k-fold):
 - Divide the train data into m equal partitions (of size N/k)
 - Hold out one partition for validation, train the classifiers on the rest of data
 - Repeat such that every partition is held out once
 - The estimate of the generalization error of the learner is the mean of errors of on all partitions

Feature selection: wrappers

- Example: Greedy (forward) search:
 - Assume a logistic regression model

Start with a simple model: $p(y=1|\mathbf{x},\mathbf{w}) = g(w_o)$

Choose feature x_i with the best error (in the internal step)

$$p(y=1|\mathbf{x},\mathbf{w}) = g(w_o + w_i x_i)$$

Choose feature x_i with the best error (in the internal step)

$$p(y=1|\mathbf{x},\mathbf{w}) = g(w_o + w_i x_i + w_i x_i)$$

Etc.

When to stop?

Goal: Stop adding features when the internal error on the data stops improving

Embedded methods

Feature selection + model learning done jointly

- Examples of embedded methods:
 - Regularized models
 - Models of higher complexity are explicitly penalized leading to 'virtual' removal of inputs from the model
 - Covers:
 - Regularized logistic/linear regression
 - Support vector machines

» Optimization of margins penalizes nonzero weights

$$J_n(\mathbf{w}, D) = L(\mathbf{w}, D) + R(\mathbf{w})$$
Function Loss function Regularization to optimize (fit of the data) penalty

- CART/Decision trees

Unsupervised dimensionality reduction

- Is there a lower dimensional representation of the data that captures well its characteristics?
- Assume:
 - We have data $D = {\mathbf{x_1, x_2,..., x_N}}$ such that $\mathbf{x}_i = (x_i^1, x_i^2, ..., x_i^d)$
 - Assume the dimension d of the data point x is very large
 - We want to analyze x, there is no class label y
- Our goal:
 - Find a lower dimensional representation of data of dimension d' < d

Principal component analysis (PCA)

Objective: We want to replace a high-dimensional input vector with a lower dimension vector (obtained by combining inputs)

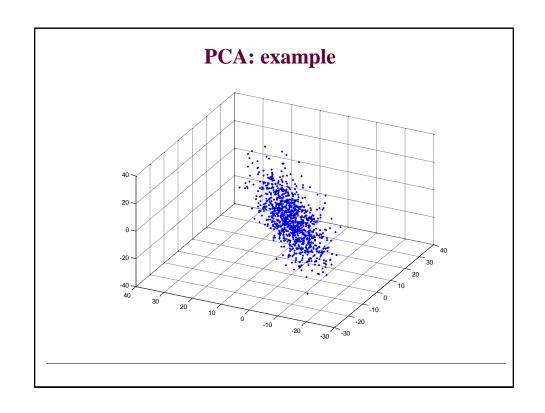
- Different from the feature subset selection !!!

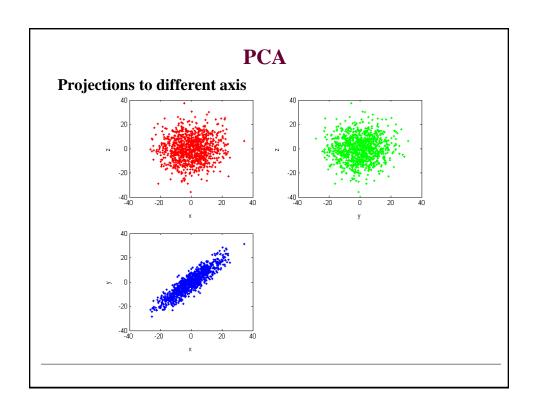
PCA:

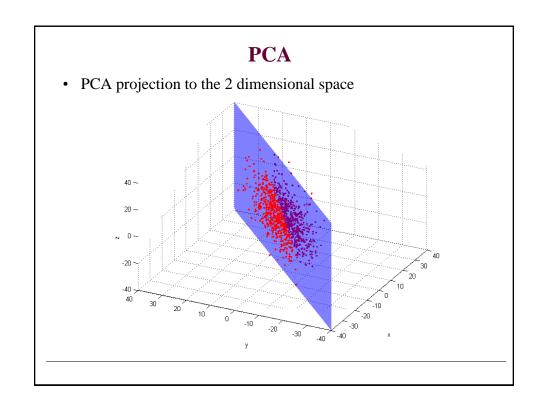
A linear transformation of d dimensional input x to M dimensional feature vector z such that M < d

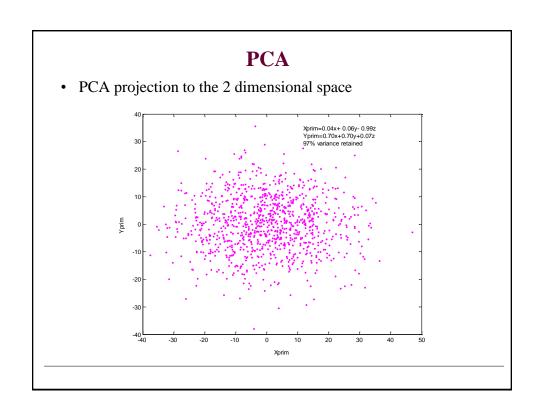
$$z = Ax$$

- Many different transformations exists, which one to pick?
- PCA –selects the linear transformation for which the retained variance is maximal
- Or, equivalently it is the linear transformation for which the sum of squares reconstruction cost is minimized









Principal component analysis (PCA)

- PCA:
 - linear transformation of a d dimensional input \mathbf{x} to \mathbf{M} dimensional vector \mathbf{z} such that $\mathbf{M} < d$ under which the retained variance is maximal. **Remember:** no y is needed
- Fact:
 - A vector \mathbf{x} can be represented using a set of orthonormal vectors \mathbf{u} (basis vectors) $\mathbf{x} = \sum_{i=1}^{d} z_i \mathbf{u}_i$
 - Leads to transformation of coordinates (from **x** to **z** using \mathbf{u} 's) \mathbf{u}_{1}^{T}

$$z_i = \mathbf{u}_i^T \mathbf{x} \qquad \mathbf{z} = \mathbf{U} \mathbf{x} \qquad \mathbf{U} = \begin{bmatrix} \mathbf{u}_2^T \\ \dots \\ \mathbf{u}_d^T \end{bmatrix}$$

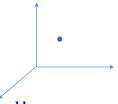
Principal component analysis (PCA)

- Fact: A vector \mathbf{x} can be represented using a set of orthonormal vectors \mathbf{u} (basis vectors) $\mathbf{x} = \sum_{i=1}^{d} z_i \mathbf{u}_i$
 - Leads to transformation of coordinates(from x to z using u's)

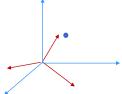
$$z_i = \mathbf{u}_i^T \mathbf{x}$$

$$z = Ux$$

$$\mathbf{U} = \begin{bmatrix} \mathbf{u}_1^T \\ \mathbf{u}_2^T \\ \dots \\ \mathbf{u}_t^T \end{bmatrix}$$



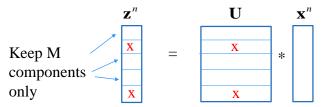
Standard bases: (1,0,0); (0,1,0); (0,0,1)



New bases: \mathbf{u}_1 , \mathbf{u}_2 , \mathbf{u}_3

PCA

• **Idea:** represent d-dimensional \mathbf{x}^n with an M-dimensional \mathbf{z}^n formed by subset of z_i coordinates for the bases defined by \mathbf{U} .



- Goal: We want to find:
 - (1) Basis vectors U and (2) a subset of basis of size M to keep
- This effectively replaces \mathbf{x}^n with its approximation $\widetilde{\mathbf{x}}^n$

$$\mathbf{x}^{n} = \sum_{i=1}^{d} z_{i}^{n} \mathbf{u}_{i} \qquad \qquad \widetilde{\mathbf{x}}^{n} = \sum_{i=1}^{M} z_{i}^{n} \mathbf{u}_{i} + \sum_{i=M+1}^{d} b_{i} \mathbf{u}_{i}$$

 b_i - constant and fixed for all data-points

PCA

Goal: We want to find:

Basis vectors U and a subset of basis of size M to keep

$$\mathbf{x}^{n} = \sum_{i=1}^{d} z_{i}^{n} \mathbf{u}_{i} \qquad \Longrightarrow \qquad \widetilde{\mathbf{x}}^{n} = \sum_{i=1}^{M} z_{i}^{n} \mathbf{u}_{i} + \sum_{i=M+1}^{d} b_{i} \mathbf{u}_{i}$$

 b_i - constant and fixed for all data-points

- How to choose the best set of basis vectors?
 - We want the subset that gives the best approximation of data x in the dataset on average (we use least squares fit)

Error for data entry \mathbf{x}^n $\mathbf{x}^n - \widetilde{\mathbf{x}}^n = \sum_{i=M+1}^d (z_i^n - b_i) \mathbf{u}_i$

Reconstruction error

$$E_{M} = \frac{1}{2} \sum_{n=1}^{N} \|\mathbf{x}^{n} - \widetilde{\mathbf{x}}^{n}\| = \frac{1}{2} \sum_{n=1}^{N} \sum_{i=M+1}^{d} (z_{i}^{n} - b_{i})^{2}$$

PCA

• **Differentiate the error function** with regard to all b_i and set equal to 0 we get:

$$b_i = \frac{1}{N} \sum_{n=1}^{N} z_i^n = \mathbf{u}_i^T \overline{\mathbf{x}} \qquad \overline{\mathbf{x}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}^n$$

• Then we can rewrite:

$$E_{M} = \frac{1}{2} \sum_{i=M+1}^{d} \mathbf{u}_{i}^{T} \mathbf{\Sigma} \mathbf{u}_{i} \qquad \mathbf{\Sigma} = \sum_{n=1}^{N} (\mathbf{x}^{n} - \overline{\mathbf{x}}) (\mathbf{x}^{n} - \overline{\mathbf{x}})^{T}$$

• The error function is optimized when basis vectors satisfy:

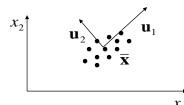
$$\mathbf{\Sigma}\mathbf{u}_{i} = \lambda_{i}\mathbf{u}_{i} \qquad \qquad E_{M} = \frac{1}{2}\sum_{i=M+1}^{d}\lambda_{i}$$

The best *M* **basis vectors**: discard vectors with *d-M* smallest eigenvalues (or keep vectors with M largest eigenvalues)

Eigenvector \mathbf{u}_i – is called a **principal component**

PCA

 Once eigenvectors u_i with largest eigenvalues are identified, they are used to transform the original d-dimensional data to M dimensions



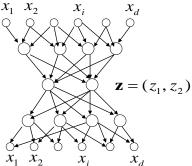
• To find the "true" dimensionality of the data *d* we can just look at eigenvalues that contribute the most (small eigenvalues are disregarded)

• **Problem:** PCA is a linear method. The "true" dimensionality can be overestimated. There can be non-linear correlations.

Modifications for nonlinearities: kernel PCA

Dimensionality reduction with neural nets

- PCA is limited to linear dimensionality reduction
- To do non-linear reductions we can use neural nets
- Auto-associative (or auto-encoder) network: a neural network with the same inputs and outputs (x)



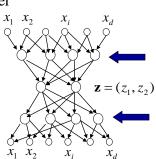
• The middle layer corresponds to the reduced dimensions

Dimensionality reduction with neural nets

• Error criterion:

$$E = \frac{1}{2} \sum_{n=1}^{N} \sum_{i=1}^{d} (y_i(x^n) - x^n)^2$$

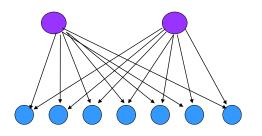
- Error measure tries to recover the original data through limited number of dimensions in the middle layer
- Non-linearities modeled through intermediate layers between the middle layer and input/output
- If no intermediate layers are used the model replicates PCA optimization through learning



Latent variable models

- Learning using unsupervised learning
- · Dimensionality reduction via inference

Latent variables (s): Dimensionality k



Dimensionality reduction via inference

Observed variables x: real valued vars Dimensionality d

Cooperative vector quantizer

Model:

Latent var s_i:

~ Bernoulli distribution parameter: π_i

$$P(s_i \mid \pi_i) = \pi_i^{s_i} (1 - \pi_i)^{1 - s_i}$$

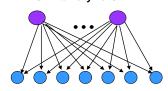
Observable variables x:

~ Normal distribution parameters: **W**, **Σ**

$$P(\mathbf{x} \mid \mathbf{s}) = N(\mathbf{W}\mathbf{s}, \Sigma)$$

We assume $\Sigma = \sigma I$

s: k binary vars



x: d real valued vars

$$\mathbf{W} = \begin{pmatrix} w_{11} & w_{12} & \dots & w_{1k} \\ w_{21} & & & & \\ & \dots & & & \\ w_{d1} & \dots & \dots & w_{dk} \end{pmatrix}$$

Joint for one instance of x and s:

$$P(\mathbf{x}, \mathbf{s} \mid \Theta) = (2\pi)^{-d/2} \sigma^{-d/2} \exp \left\{ -\frac{1}{2\sigma^2} (\mathbf{x} - \mathbf{W}\mathbf{s})^T (\mathbf{x} - \mathbf{W}\mathbf{s}) \right\} \prod_{i=1}^k \pi_i^{s_i} (1 - \pi_i)^{(1 - s_i)}$$

Dimensionality reduction through clustering

- Clustering algorithms
 - group together "similar" instances in the data sample
- Dimensionality reduction based on clustering:
 - Replace a high dimensional data entry with a cluster label
- · Problem:
 - Determistic clustering gives only one label per input
 - May not be enough to represent the data for prediction
- Solutions:
 - Clustering over subsets of input data
 - Soft clustering (probability of a cluster is used directly)

Dimensionality reduction through clustering

- **Soft clustering** (e.g. mixture of Gaussians) attempts to cover all instances in the data sample with a small number of groups
 - Each group is more or less responsible for a data entry (responsibility – a posterior of a group given the data entry)

$$h_{il} = \frac{\pi_i p(x_l \mid y_l = i)}{\sum_{u=1}^k \pi_u p(x_l \mid y_l = u)}$$

- · Dimensionality reduction based on soft clustering
 - Replace a high dimensional data with the set of group posteriors
 - Feed all posteriors to the learner e.g. linear regressor, classifier

CS 2750 Machine Learning

Dimensionality reduction through clustering

- We can use the idea of soft clustering before applying regression/classification learning
- Two stage algorithms
 - Learn the clustering
 - Learn the classification
- Input clustering: \mathbf{x} (high dimensional)
- Output clustering (Input classifier): $p(c = i \mid \mathbf{x})$
- Output classifier: y
- Example: Networks with Radial Basis Functions (RBFs)
- Problem:
 - Clustering learned based on $p(\mathbf{x})$ (disregards the target)
 - Prediction based on p(y|x)

CS 2750 Machine Learning

Multidimensional scaling

- Find a lower dimensional space projection such that the distances among data points are preserved
- Used in visualization d-diminensional data transformed to 3D or 2D
- Dissimilarities before projection $\delta_{i,j} = ||x_i x_j||$
- Objective: Optimize points and their coordinates by fitting the dissimilarities afterwards

$$\min_{\{x_1, x_2, \dots x_n\}} \sum_{i < i} (||x_i' - x_j'|| - \delta_{ij})^2$$