CS 2750 Machine Learning Lecture 18

Clustering

Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square

Clustering

Groups together "similar" instances in the data sample

Basic clustering problem:

- distribute data into *k* different groups such that data points similar to each other are in the same group
- Similarity between data points is defined in terms of some distance metric (can be chosen)

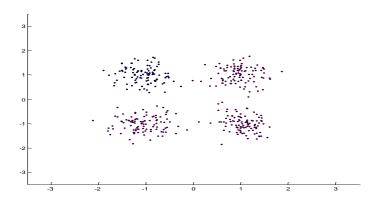
Clustering is useful for:

- Similarity/dissimilarity analysis

 Analyze what data points in the sample are close to each other
- **Dimensionality reduction**High dimensional data replaced with a group (cluster) label

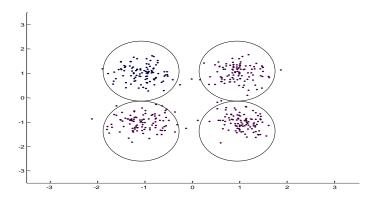
Clustering example

- We see data points and want to partition them into groups
- What data points belong together?



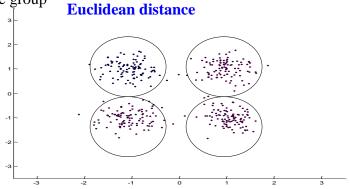
Clustering example

- We see data points and want to partition them into the groups
- Which data points belong together?



Clustering example

- We see data points and want to partition them into the groups
- Requires a dissimilarity or a similarity measure to tell us what points are close (similar) to each other and are in the same group



Clustering example

- A set of patient cases
- We want to partition them into groups based on similarities

Patient #	Age	Sex	Heart Rate	Blood pressure
Patient 1	55	M	85	125/80
Patient 2	62	M	87	130/85
Patient 3	67	F	80	126/86
Patient 4	65	F	90	130/90
Patient 5	70	M	84	135/85

Clustering example

- A set of patient cases
- We want to partition them into the groups based on similarities

Patient #	Age	Sex	Heart Rate	Blood pressure
Patient 1	55	M	85	125/80
Patient 2	62	M	87	130/85
Patient 3	67	F	80	126/86
Patient 4	65	F	90	130/90
Patient 5	70	M	84	135/85

How to design the dissimilarity/similarity measure to quantify similarities?

Similarity and dissimilarity measures

- Dissimilarity measure
 - Numerical measure of how different two data objects are
 - Often expressed in terms of a distance metric
 - Euclidean: $d(a,b) = \sqrt{\sum_{i=1}^{k} (a_i b_i)^2}$
- Similarity measure
 - Numerical measure of how alike two data objects are
 - Examples:
 - <u>Gaussian kernel:</u> $K(a,b) = \frac{1}{(2\pi h^2)^{d/2}} \exp\left[-\frac{\|a-b\|_2^2}{2h^2}\right]$
 - Cosine similarity: $K(a,b) = a^{T}b$

Distance metrics

Dissimilarity is often measured with the help of a distance metrics.

Properties of distance metrics:

Assume 2 data entries a, b

Positiveness: $d(a,b) \ge 0$

Symmetry: d(a,b) = d(b,a)

Identity: d(a,a) = 0

Triangle inequality: $d(a,c) \le d(a,b) + d(b,c)$

Distance metrics

Assume pure real-valued data-points:

 12
 34.5
 78.5
 89.2
 19.2

 23.5
 41.4
 66.3
 78.8
 8.9

 33.6
 36.7
 78.3
 90.3
 21.4

 17.2
 30.1
 71.6
 88.5
 12.5

• • •

What distance metric to use?

Distance metrics

Assume pure real-valued data-points:

 12
 34.5
 78.5
 89.2
 19.2

 23.5
 41.4
 66.3
 78.8
 8.9

 33.6
 36.7
 78.3
 90.3
 21.4

 17.2
 30.1
 71.6
 88.5
 12.5

What distance metric to use?

Euclidian: works for an arbitrary k-dimensional space

$$d(a,b) = \sqrt{\sum_{i=1}^{k} (a_i - b_i)^2}$$

Distance metrics

Assume pure real-valued data-points:

12 34.5 78.5 89.2 19.2 23.5 41.4 66.3 78.8 8.9 33.6 36.7 78.3 90.3 21.4 17.2 30.1 71.6 88.5 12.5

What distance metric to use?

Squared Euclidian: works for an arbitrary k-dimensional space

$$d^{2}(a,b) = \sum_{i=1}^{k} (a_{i} - b_{i})^{2}$$

Distance metrics

Assume pure real-valued data-points:

 12
 34.5
 78.5
 89.2
 19.2

 23.5
 41.4
 66.3
 78.8
 8.9

 33.6
 36.7
 78.3
 90.3
 21.4

 17.2
 30.1
 71.6
 88.5
 12.5

Manhattan distance:

works for an arbitrary k-dimensional space

$$d(a,b) = \sum_{i=1}^{k} |a_i - b_i|$$

Etc. ..

Distance measures

Generalized distance metric:

$$d^{2}(\mathbf{a},\mathbf{b}) = (\mathbf{a} - \mathbf{b})^{T} \mathbf{\Gamma}^{-1} (\mathbf{a} - \mathbf{b})$$

 Γ semi-definite positive matrix

 Γ^{-1} is a matrix that weights attributes proportionally to their importance. Different weights lead to a different distance metric.

If $\Gamma = I$ we get squared Euclidean

 $\Gamma = \Sigma$ (covariance matrix) – we get the **Mahalanobis distance** that takes into account correlations among attributes

Distance measures

Assume categorical data where integers represent the different categories:

. . .

What distance metric to use?

Distance measures

Assume categorical data where integers represent the different categories:

. . .

What distance metric to use?

Hamming distance: The number of values that need to be changed to make them the same

Distance measures.

Assume pure binary values data:

0 1 1 0 1 1 0 1 0 1 0 1 1 0 1 1 1 1 1 1

One metric is the **Hamming distance:** The number of bits that need to be changed to make the entries the same

How about squared Euclidean?

$$d^{2}(a,b) = \sum_{i=1}^{k} (a_{i} - b_{i})^{2}$$

Distance measures.

Assume pure binary values data:

0 1 1 0 1 1 0 1 0 1 0 1 1 0 1 1 1 1 1 1

One metric is the **Hamming distance:** The number of bits that need to be changed to make the entries the same

How about the squared Euclidean?

$$d^{2}(a,b) = \sum_{i=1}^{k} (a_{i} - b_{i})^{2}$$

The same as Hamming distance.

Distance measures

Combination of real-valued and categorical attributes

Pat	tient #	Age	Sex	Heart Rate	Blood pressure
Pat	ient 1	55	M	85	125/80
Pat	ient 2	62	M	87	130/85
Pat	ient 3	67	F	80	126/86
Pat	ient 4	65	F	90	130/90
Pat	ient 5	70	M	84	135/85

What distance metric to use?

Distance measures.

Combination of real-valued and categorical attributes

Patient #	Age	Sex	Heart Rate	Blood pressure
Patient 1	55	M	85	125/80
Patient 2	62	M	87	130/85
Patient 3	67	F	80	126/86
Patient 4	65	F	90	130/90
Patient 5	70	M	84	135/85

What distance metric to use?

One solution: A weighted sum approach: e.g. a mix of Euclidian and Hamming distances for subsets of attributes More complex solutions:

using tensors and decompositions

Distance metrics and similarity

- Dissimilarity/distance measure
 - Numerical measure of how different two data objects are
 - Expressed in terms of distance metrics
- Similarity measure
 - Numerical measure of how alike two data objects are
 - Example: <u>Gaussian kernel:</u>

$$K(a,b) = \frac{1}{(2\pi h^2)^{d/2}} \exp\left[-\frac{\|a-b\|_2^2}{2h^2}\right]$$

Cosine similarity:

$$K(a,b) = a^T b$$

 Do not have to satisfy the properties like the ones for the distance metric

Clustering

Clustering is useful for:

- Similarity/Dissimilarity analysis
 - Analyze what data points in the sample are close to each other
- Dimensionality reduction
 - High dimensional data replaced with a group (cluster) label
- **Data reduction:** Replaces many data-points with a point representing the group mean

Challenges:

- How to measure similarity (problem/data specific)?
- How to choose the number of groups?
 - Many clustering algorithms require us to provide the number of groups ahead of time

Clustering algorithms

- K-means algorithm
 - suitable only when data points have continuous values; groups are defined in terms of cluster centers (also called means). Refinement of the method to categorical values: K-medoids
- Probabilistic methods (with EM) = soft clustering
 - Latent variable models: class (cluster) is represented by a latent (hidden) variable value
 - Every point goes to the class with the highest posterior
 - Examples: mixture of Gaussians, Naïve Bayes with a hidden class
- Hierarchical methods
 - Agglomerative
 - Divisive

Clustering algorithms

- K-means algorithm
 - suitable only when data points have continuous values; groups are defined in terms of cluster centers (also called means). Refinement of the method to categorical values: K-medoids
- Probabilistic methods (with EM) = soft clustering
 - Latent variable models: class (cluster) is represented by a latent (hidden) variable value
 - Every point goes to the class with the highest posterior
 - Examples: mixture of Gaussians, Naïve Bayes with a hidden class
- Hierarchical methods
 - Agglomerative
 - Divisive

K-means clustering algorithm

- an iterative clustering algorithm
- works in the d-dimensional R space representing \mathbf{x}

K-Means clusterting algorithm:

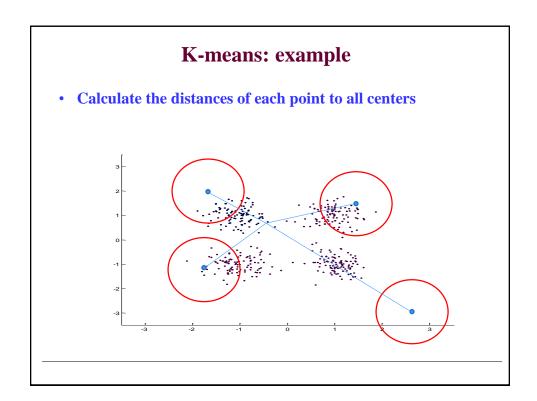
Initialize randomly *k* values of means (centers)

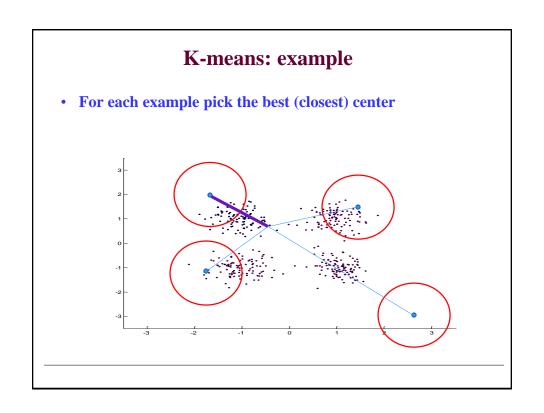
Repeat

- Partition the data according to the current set of means (using the similarity measure)
- Move the means to the center of the data in the current partition

Until no change in the means

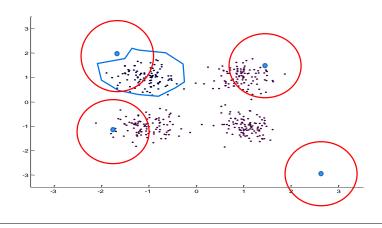
K-means: example • Initialize the cluster centers





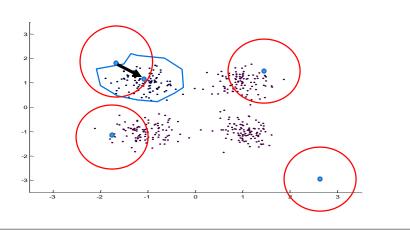
K-means: example

• Recalculate the new mean from all data examples assigned to the same cluster center



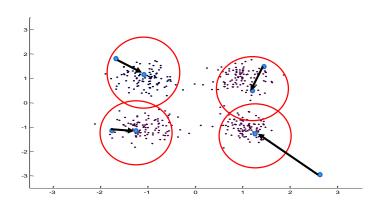
K-means: example

• Shift the cluster center to the new mean



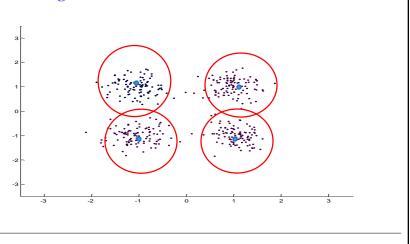
K-means: example

• Shift the cluster centers to the new calculated means



K-means: example

- And repeat the iteration ...
- Till no change in the centers



K-means clustering algorithm

K-Means algorithm:

Initialize randomly *k* values of means (centers)

Repeat

- Partition the data according to the current set of means (using the similarity measure)
- Move the means to the center of the data in the current partition

Until no change in the means

Properties:

 Minimizes the sum of squared center-point distances for all clusters

$$\min_{\mathbf{S}} \sum_{i=1}^{k} \sum_{x_{i} \in S_{i}} ||x_{j} - u_{i}||^{2} \quad u_{i} = \text{center of cluster } S_{i}$$

K-means clustering algorithm

- Properties:
 - converges to centers minimizing the sum of squared center-point distances (still local optima)
 - The result is **sensitive** to the initial means' values
- Advantages:
 - Simplicity
 - Generality can work for more than one distance measure
- Drawbacks:
 - Can perform poorly with overlapping regions
 - Lack of robustness to outliers
 - Good for attributes (features) with continuous values
 - Allows us to compute cluster means
 - · k-medoid algorithm used for discrete data

Clustering algorithms

- K-means algorithm
 - suitable only when data points have continuous values; groups are defined in terms of cluster centers (also called means). Refinement of the method to categorical values: K-medoids
- Probabilistic methods (with EM) = soft clustering
 - Latent variable models: class (cluster) is represented by a latent (hidden) variable value
 - Every point goes to the class with the highest posterior
 - Examples: mixture of Gaussians, Naïve Bayes with a hidden class
- Hierarchical methods
 - Agglomerative
 - Divisive

Probabilistic (EM-based) algorithms

• Latent variable models

Examples: Naïve Bayes with hidden class Mixture of Gaussians

- Partitioning:
 - the data point belongs to the class with the highest posterior
- Advantages:
 - Good performance on overlapping regions
 - Robustness to outliers
 - Data attributes can have different types of values
- Drawbacks:
 - EM is computationally expensive and can take time to converge
 - Density model should be given in advance

Clustering algorithms

- K-means algorithm
 - suitable only when data points have continuous values; groups are defined in terms of cluster centers (also called means). Refinement of the method to categorical values:
 K-medoids
- Probabilistic methods (with EM) = soft clustering
 - Latent variable models: class (cluster) is represented by a latent (hidden) variable value
 - Every point goes to the class with the highest posterior
 - Examples: mixture of Gaussians, Naïve Bayes with a hidden class
- Hierarchical methods
 - Agglomerative
 - Divisive

Hierarchical clustering

Can use many different dissimilarity measures Typical dissimilarity measures d(a,b):

Pure real-valued data-points:

- Euclidean, Manhattan, Minkowski distances

Pure categorical data:

- Hamming distance, Number of matching values

Combination of real-valued and categorical attributes

- Weighted, or Euclidean

Hierarchical clustering

Two versions of the hierarchical clustering

- Agglomerative approach
 - Merge pair of clusters in a bottom-up fashion, starting from singleton clusters
- Divisive approach:
 - Splits clusters in top-down fashion, starting from one complete cluster

Hierarchical (agglomerative) clustering

Approach:

- Compute dissimilarity matrix for all pairs of points
 - uses standard or other distance measures
- Construct clusters greedily:
 - Agglomerative approach
 - Merge pair of clusters in a bottom-up fashion, starting from singleton clusters
- Stop the greedy construction when some criterion is satisfied
 - E.g. fixed number of clusters

Hierarchical (agglomerative) clustering

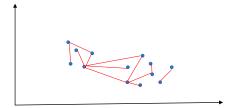
Approach:

- Compute dissimilarity matrix for all pairs of points
 - uses standard or other distance measures

Hierarchical (agglomerative) clustering

Approach:

- Compute dissimilarity matrix for all pairs of points
 - uses standard or other distance measures

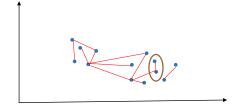


N datapoints, O(N²) pairs, O(N²) distances

Hierarchical (agglomerative) clustering

Approach:

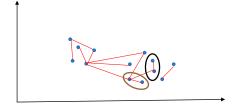
- Compute dissimilarity matrix for all pairs of points
 - uses standard or other distance measures
- Construct clusters greedily:
 - Agglomerative approach
 - Merge pair of clusters in a bottom-up fashion, starting from singleton clusters



Hierarchical (agglomerative) clustering

Approach:

- Compute dissimilarity matrix for all pairs of points
 - uses standard or other distance measures
- Construct clusters greedily:
 - Agglomerative approach
 - Merge pair of clusters in a bottom-up fashion, starting from singleton clusters



Hierarchical (agglomerative) clustering

Approach:

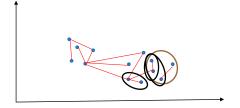
- Compute dissimilarity matrix for all pairs of points
 - uses standard or other distance measures
- Construct clusters greedily:
 - Agglomerative approach
 - Merge pair of clusters in a bottom-up fashion, starting from singleton clusters



Hierarchical (agglomerative) clustering

Approach:

- Compute dissimilarity matrix for all pairs of points
 - uses standard or other distance measures
- Construct clusters greedily:
 - Agglomerative approach
 - Merge pair of clusters in a bottom-up fashion, starting from singleton clusters



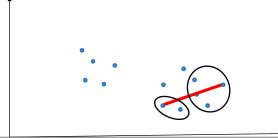
Cluster merging

- Agglomerative approach
 - Merge pair of clusters in a bottom-up fashion, starting from singleton clusters
 - Merge clusters based on cluster (or linkage) distances.
 Defined in terms of point distances. Examples:

Cluster merging

- Agglomerative approach
 - Merge pair of clusters in a bottom-up fashion, starting from singleton clusters
 - Merge clusters based on cluster (or linkage) distances.
 Defined in terms of point distances. Examples:

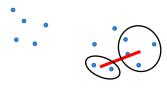
Max distance $d_{\max}(C_i, C_j) = \max_{p \in C_i, q \in C_j} d(p, q)$



Cluster merging

- Agglomerative approach
 - Merge pair of clusters in a bottom-up fashion, starting from singleton clusters
 - Merge clusters based on cluster (or linkage) distances.
 Defined in terms of point distances. Examples:

Mean distance
$$d_{mean}(C_i, C_j) = \left| d \left(\frac{1}{|C_i|} \sum_i p_i; \frac{1}{|C_j|} \sum_j q_j \right) \right|$$



Hierarchical (agglomerative) clustering

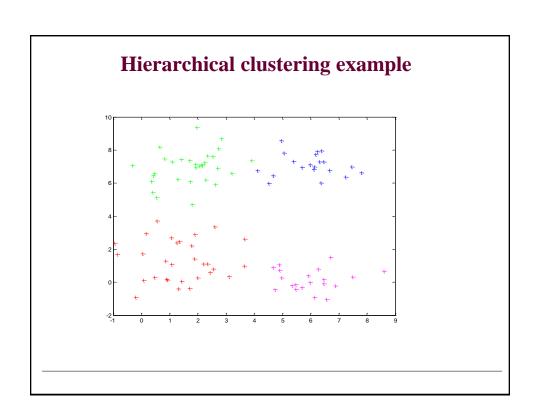
Approach:

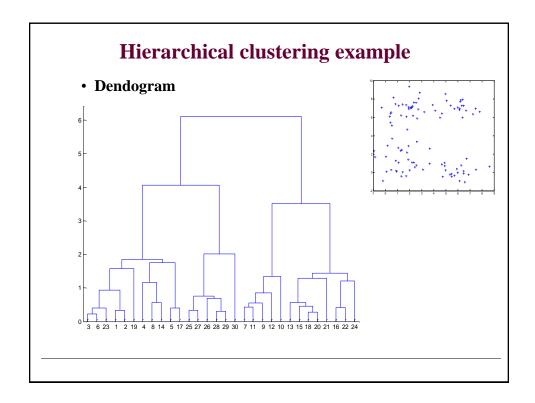
- Compute dissimilarity matrix for all pairs of points
 - uses standard or other distance measures
- Construct clusters greedily:
 - Agglomerative approach
 - Merge pair of clusters in a bottom-up fashion, starting from singleton clusters
- Stop the greedy construction when some criterion is satisfied
 - E.g. fixed number of clusters

Hierarchical (divisive) clustering

Approach:

- Compute dissimilarity matrix for all pairs of points
 - uses standard distance or other dissimilarity measures
- Construct clusters greedily:
 - Agglomerative approach
 - Merge pair of clusters in a bottom-up fashion, starting from singleton clusters
 - Divisive approach:
 - Splits clusters in top-down fashion, starting from one complete cluster
- Stop the greedy construction when some criterion is satisfied
 - E.g. fixed number of clusters





Hierarchical clustering

Advantage:

Smaller computational cost; avoids scanning all possible clusterings

Disadvantage:

 Greedy choice fixes the order in which clusters are merged; cannot be repaired

• Partial solution:

• combine hierarchical clustering with iterative algorithms like k-means algorithm

Other clustering methods

• Spectral clustering

 Uses similarity matrix and its spectral decomposition (eigenvalues and eigenvectors)

• Multidimensional scaling

 techniques often used in data visualization for exploring similarities or dissimilarities in data.