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CS 2750 Machine Learning

Lecture 15

Milos Hauskrecht

milos@pitt.edu

5329 Sennott Square

Bayesian belief networks II

Density estimation

Data: 

Objective: try to estimate the underlying true probability 
distribution over variables       ,           ,  using examples in  D

Standard (iid) assumptions: Samples

• are independent of each other

• come from the same (identical) distribution (fixed          )

},..,,{ 21 nDDDD 

iiD x a vector of attribute values

X
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n samplestrue distribution estimate
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Modeling complex distributions

Question: How to model and learn complex multivariate 

distributions            with a large number of variables?

Example: modeling of disease – symptoms relations

• Disease: pneumonia

• Patient symptoms (findings, lab tests):

– Fever, Cough, Paleness, WBC (white blood cells) count, 

Chest pain, etc.

• Model of the full joint distribution: 

P(Pneumonia, Fever, Cough, Paleness, WBC, Chest pain)

One probability per assignment of values to variables: 

P(Pneumonia =T, Fever =T, Cought=T, WBC=High, Chest pain=T)

)(ˆ Xp

Bayesian belief networks (BBNs)

Bayesian belief networks (late 80s, beginning of 90s)

Key features: 

• Represent the full joint distribution over the variables more 

compactly with a smaller number of parameters. 

• Take advantage of conditional and marginal independences

among random variables

• X and Y are independent

• X and Y are conditionally independent given Z

)()(),( YPXPYXP 

)|()|()|,( ZYPZXPZYXP 

)|(),|( ZXPZYXP 
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Bayesian belief network

Burglary Earthquake

JohnCalls MaryCalls

Alarm

P(B) P(E)

P(A|B,E)

P(J|A) P(M|A)

1. Directed acyclic graph

• Nodes = random variables

Burglary, Earthquake, Alarm, Mary calls and John calls

• Links = direct (causal) dependencies between variables.

The chance of Alarm being is influenced by Earthquake, 

The chance of John calling is affected by the Alarm

Bayesian belief network

2. Local conditional distributions 

• relating variables and their parents

Burglary Earthquake

JohnCalls MaryCalls

Alarm

P(B) P(E)

P(A|B,E)

P(J|A) P(M|A)
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Bayesian belief network

Burglary Earthquake

JohnCalls MaryCalls

Alarm

B   E T       F

T   T 0.95   0.05
T   F     0.94   0.06
F   T     0.29   0.71
F   F     0.001 0.999

P(B)

0.001 0.999

P(E)

0.002  0.998

A   T      F

T    0.90  0.1
F    0.05  0.95

A      T      F

T    0.7    0.3
F    0.01   0.99

P(A|B,E)

P(J|A) P(M|A)

T        F T         F

Full joint distribution in BBNs

Full joint distribution is defined in terms of local conditional 

distributions (obtained via the chain rule):

))(|(),..,,(
,..1
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 ),,,,( FMTJTATETBP

Example:

)|()|(),|()()( TAFMPTATJPTETBTAPTEPTBP 

Then its probability is:

Assume the following assignment

of values to random variables

FMTJTATETB  ,,,,
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Bayesian belief networks (BBNs)

Bayesian belief networks 

• Represent the full joint distribution over the variables more 

compactly using the product of local conditionals. 

• But how did we get to local parameterizations?

Answer:

• Chain rule + 

• Graphical structure encodes conditional and marginal 

independences among random variables

• A and B are independent

• A and B are conditionally independent given C

• The graph structure implies the decomposition !!!

)()(),( BPAPBAP 

)|()|()|,( CBPCAPCBAP )|(),|( CAPBCAP 

Independences in BBNs

3 basic independence structures:

Burglary

JohnCalls

Alarm

Burglary

Alarm

Earthquake

JohnCalls

Alarm

MaryCalls

1. 2. 3.
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Independences in BBNs

1. JohnCalls is independent of Burglary given Alarm

Burglary

JohnCalls

Alarm

Burglary

Alarm

Earthquake

JohnCalls

Alarm

MaryCalls

1. 2. 3.

)|(),|( AJPBAJP 

)|()|()|,( ABPAJPABJP 

Independences in BBNs

2.   Burglary is independent of Earthquake (not knowing Alarm) 

Burglary and Earthquake become dependent given Alarm !!

Burglary

JohnCalls

Alarm

JohnCalls

Alarm

MaryCalls

1. 3.

)()(),( EPBPEBP 

Burglary

Alarm

Earthquake

2.
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Independences in BBNs

3.   MaryCalls is independent of JohnCalls given Alarm

Burglary

JohnCalls

Alarm

Burglary

Alarm

Earthquake

1. 2.

JohnCalls

Alarm

3.

MaryCalls

)|(),|( AJPMAJP 

)|()|()|,( AMPAJPAMJP 

Independences in BBN

• BBN distribution models many conditional independence 
relations among distant variables and sets of variables

• These are defined in terms of the graphical criterion called d-
separation

• D-separation and independence

– Let X,Y and Z be three sets of nodes

– If X and Y are d-separated by Z,  then X and Y are 
conditionally independent given Z

• D-separation :

– A is d-separated from B given C if every undirected path 
between them is blocked with C

• Path blocking

– 3 cases that expand on three basic independence structures
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Undirected path blocking

A is d-separated from B given C if every undirected path 

between them is blocked

A BC

Undirected path blocking

A is d-separated from B given C if every undirected path 

between them is blocked

A BC
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Undirected path blocking

A is d-separated from B given C if every undirected path 

between them is blocked

• 1.  Path blocking with a linear substructure

Z in C

X Y

X in A Y in B

Z

A BC

Undirected path blocking

A is d-separated from B given C if every undirected path 

between them is blocked

• 2.  Path blocking with the wedge substructure

Z in C
X Y

X in A Y in B

Z
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Undirected path blocking

A is d-separated from B given C if every undirected path 

between them is blocked

• 3.  Path blocking with the vee substructure

Z or any of its descendants not in C

X
Y

X in A Y in B

Z

Independences in BBNs

• Earthquake and Burglary are independent given MaryCalls         ?

Burglary

JohnCalls

Alarm

Earthquake

MaryCalls

RadioReport
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CS 1571 Intro to AI

Independences in BBNs

• Earthquake and Burglary are independent given MaryCalls         F

• Burglary and MaryCalls are independent (not knowing Alarm)   ?

Burglary

JohnCalls

Alarm

Earthquake

MaryCalls

RadioReport

Independences in BBNs

• Earthquake and Burglary are independent given MaryCalls         F

• Burglary and MaryCalls are independent (not knowing Alarm)   F

• Burglary and RadioReport are independent given Earthquake      ?

Burglary

JohnCalls

Alarm

Earthquake

MaryCalls

RadioReport
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Independences in BBNs

• Earthquake and Burglary are independent given MaryCalls         F

• Burglary and MaryCalls are independent (not knowing Alarm)   F

• Burglary and RadioReport are independent given Earthquake      T

• Burglary and RadioReport are independent given MaryCalls        ?

Burglary

JohnCalls

Alarm

Earthquake

MaryCalls

RadioReport

Independences in BBNs

• Earthquake and Burglary are independent given MaryCalls         F

• Burglary and MaryCalls are independent (not knowing Alarm)   F

• Burglary and RadioReport are independent given Earthquake      T

• Burglary and RadioReport are independent given MaryCalls        F

Burglary

JohnCalls

Alarm

Earthquake

MaryCalls

RadioReport
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Full joint distribution in BBNs

M

A

B

J

E

 ),,,,( FMTJTATETBP

Rewrite the full joint probability using the 

product rule:

Full joint distribution in BBNs

M

A

B

J

E

 ),,,,( FMTJTATETBP

),,,(),,,|( FMTATETBPFMTATETBTJP 

Rewrite the full joint probability using the 

product rule:

Product rule
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Full joint distribution in BBNs

M

A

B

J

E

 ),,,,( FMTJTATETBP

),,,(),,,|( FMTATETBPFMTATETBTJP 

),,,()|( FMTATETBPTATJP 

Rewrite the full joint probability using the 

product rule:

Product rule

Full joint distribution in BBNs

M

A

B

J

E

 ),,,,( FMTJTATETBP

),,,(),,,|( FMTATETBPFMTATETBTJP 

),,,()|( FMTATETBPTATJP 

),,(),,|( TATETBPTATETBFMP 

Rewrite the full joint probability using the 

product rule:

Product rule
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Full joint distribution in BBNs

M

A

B

J

E

 ),,,,( FMTJTATETBP

),,,(),,,|( FMTATETBPFMTATETBTJP 

),,,()|( FMTATETBPTATJP 

),,(),,|( TATETBPTATETBFMP 

),,()|( TATETBPTAFMP 

Rewrite the full joint probability using the 

product rule:

Full joint distribution in BBNs

M

A

B

J

E

 ),,,,( FMTJTATETBP

),,,(),,,|( FMTATETBPFMTATETBTJP 

),,,()|( FMTATETBPTATJP 

),,(),,|( TATETBPTATETBFMP 

),,()|( TATETBPTAFMP 

),(),|( TETBPTETBTAP 

Rewrite the full joint probability using the 

product rule:
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Full joint distribution in BBNs

M

A

B

J

E

 ),,,,( FMTJTATETBP

),,,(),,,|( FMTATETBPFMTATETBTJP 

),,,()|( FMTATETBPTATJP 

),,(),,|( TATETBPTATETBFMP 

),,()|( TATETBPTAFMP 

),(),|( TETBPTETBTAP 

)()( TEPTBP 

Rewrite the full joint probability using the 

product rule:

Full joint distribution in BBNs

M

A

B

J

E

 ),,,,( FMTJTATETBP

)()(),|()|()|( TEPTBPTETBTAPTAFMPTATJP 

),,,(),,,|( FMTATETBPFMTATETBTJP 

),,,()|( FMTATETBPTATJP 

),,(),,|( TATETBPTATETBFMP 

),,()|( TATETBPTAFMP 

),(),|( TETBPTETBTAP 

)()( TEPTBP 

Rewrite the full joint probability using the 

product rule:
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# of parameters of the full joint: 

Parameter complexity problem

• In the BBN the full joint distribution is defined as:

• What did we save?

Alarm example: binary (True, False) variables

Burglary

JohnCalls

Alarm

Earthquake

MaryCalls

))(|(),..,,(
,..1
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?

# of parameters of the full joint: 

Parameter complexity problem

• In the BBN the full joint distribution is defined as:

• What did we save?

Alarm example: binary (True, False) variables

Burglary

JohnCalls

Alarm

Earthquake

MaryCalls

))(|(),..,,(
,..1

21 



ni

iin XpaXXXX PP

3225 
One parameter depends on the rest:

31125 
# of parameters of the BBN:

?
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Bayesian belief network: parameters count

Burglary Earthquake

JohnCalls MaryCalls

Alarm

B   E T       F

T   T 0.95   0.05
T   F     0.94   0.06
F   T     0.29   0.71
F   F     0.001 0.999

P(B)

0.001 0.999

P(E)

0.002  0.998

A   T      F

T    0.90  0.1
F    0.05  0.95

A      T      F

T    0.7    0.3
F    0.01   0.99

P(A|B,E)

P(J|A) P(M|A)

T        F T         F

2 2

8

4 4

Total: 20

# of parameters of the full joint: 

Parameter complexity problem

• In the BBN the full joint distribution is defined as:

• What did we save?

Alarm example: 5 binary (True, False) variables

Burglary

JohnCalls

Alarm

Earthquake

MaryCalls

))(|(),..,,(
,..1

21 



ni

iin XpaXXXX PP

3225 

31125 

One parameter depends on the rest:

# of parameters of the BBN:

20)2(2)2(22 23 

One parameter in every conditional depends on the rest: 

?
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Bayesian belief network: free parameters

Burglary Earthquake

JohnCalls MaryCalls

Alarm

B   E T       F

T   T 0.95   0.05
T   F     0.94   0.06
F   T     0.29   0.71
F   F     0.001 0.999

P(B)

0.001 0.999

P(E)

0.002  0.998

A   T      F

T    0.90  0.1
F    0.05  0.95

A      T      F

T    0.7    0.3
F    0.01   0.99

P(A|B,E)

P(J|A) P(M|A)

T        F T         F

1 1

4

2 2

Total free 

params: 10

= 1- 0.95

= 1- 0.002

# of parameters of the full joint: 

Parameter complexity problem

• In the BBN the full joint distribution is defined as:

• What did we save?

Alarm example: 5 binary (True, False) variables

Burglary

JohnCalls

Alarm

Earthquake

MaryCalls

))(|(),..,,(
,..1

21 



ni

iin XpaXXXX PP

3225 

31125 

One parameter depends on the rest:

# of parameters of the BBN:

20)2(2)2(22 23 

One parameter in every conditional depends on the rest: 

10)1(2)2(222 
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BBNs examples

• In various areas:

– Intelligent user interfaces (Microsoft)

– Troubleshooting, diagnosis of a technical device

– Medical diagnosis:

• Pathfinder CPSC

• Munin

• QMR-DT

– Collaborative filtering

– Military applications

– Insurance, credit applications

Diagnosis of car engine

• Diagnose the engine start problem 
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Car insurance example

• Predict claim costs (medical, liability) based on application data

(ICU) Alarm network
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CPCS

• Computer-based Patient Case Simulation system (CPCS-PM) 

developed by Parker and Miller (at University of Pittsburgh)

• 422 nodes and 867 arcs

Naïve Bayes model

A special (simple) Bayesian belief network

• Defines a generative classifier model

• Model of  P(x ,y ) = P(x | y) P(y)

– Class variable y

p(y)

– Attributes are independent given y

Learning:

• Parameterize models of p(y) and all p(x j | y=i) 

• ML estimates of the parameters 

Class y

1x 2x nx

. .

)|()|(
1

iyxpiyp
d

j

j  


x
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Naïve Bayes model

A special (simple) Bayesian belief network

• Defines a generative classifier model

• Model of P(x ,y ) = P(x | y) P(y)

Classification: given x select the class

– Select the class with the maximum posterior

– Calculation of a posterior is an example of BBN inference

Remember: we can calculate the probabilities from the full joint

Class Y

1X 2X nX

. .

 




 
















k

u

d

j

j

d

j

j

k

u

uyxpuyp

iyxpiyp

uypuyp

iypiyp
iyp

1 1

1

1

)|()(

)|()(

)|()(

)|()(
)|(

x

x
x

Learning of BBN

Learning.

• Learning of parameters of conditional probabilities 

• Learning of the network structure

Variables:

• Observable – values present in every data sample

• Hidden – they values are never observed in data

• Missing values – values sometimes present, 
sometimes not

Next:

• Learning of  the parameters of BBN

• Values for all variables are observable 
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Estimation of parameters of BBN

• Idea: decompose the estimation problem for the full joint 

over a large number of variables to a set of smaller estimation 

problems corresponding to local parent-variable conditionals.  

• Example: Assume A,E,B are binary with True, False values

• Assumption that enables the decomposition: parameters of 

conditional distributions are independent

B E

A

P(A|B=T,E=T)

P(A|B,E)
P(A|B=T,E=F)

P(A|B=F,E=T)

P(A|B=F,E=F)

Learning of P(A|B,E) = 4 estimation 

problems

Estimates of parameters of BBN

• Two assumptions that permit the decomposition:

– Sample independence

– Parameter independence


 


n

i

q

j

ij

i

DpDp
1 1

),|(),|( Θ





N

u

uDPDP
1

),|(),|(  ΘΘ

Parameters of each conditional (one for every assignment of

values to parent variables) can be learned independently

# of nodes

# of parents’ values
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Learning of BBN parameters. Example.

Example:

Pneumonia

CoughFeverPaleness High WBC

P(Pneumonia)

?         ?   

T         F

Pn      T      F

T        ?      ?
F        ?      ?

P(HWBC|Pneum)

P(Cough|Pneum)P(Fever|Pneum)P(Palen|Pneum)

?         ?         ?         

Learning of BBN parameters. Example.

Data D (different patient cases):

Pal  Fev  Cou HWB  Pneu

T       T     T      T        F

T       F     F      F        F

F       F     T      T        T

F       F     T      F        T

F      T      T      T       T

T       F     T      F        F

F       F     F      F        F

T       T     F      F        F

T       T     T      T       T

F       T     F      T        T

T       F     F      T        F

F       T     F      F        F

Pneumonia

CoughFeverPaleness High WBC
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Estimates of parameters of BBN

• Much like multiple coin toss or roll of a dice problems. 

• A “smaller” learning problem corresponds to the learning of 

exactly one conditional distribution 

• Example:

• Problem: How to pick the data to learn?

)|( TPneumoniaFever P

Learning of BBN parameters. Example.

Learn:

Step 1: Select data points with Pneumonia=T

Pal  Fev  Cou HWB  Pneu

T       T     T      T        F

T       F     F      F        F

F       F     T      T        T

F       F     T      F        T

F      T      T      T       T

T       F     T      F        F

F       F     F      F        F

T       T     F      F        F

T       T     T      T       T

F       T     F      T        T

T       F     F      T        F

F       T     F      F        F

)|( TPneumoniaFever P

Pneumonia

CoughFeverPaleness High WBC
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Learning of BBN parameters. Example.

Learn:

Step 1: Ignore the rest

Pal  Fev  Cou HWB  Pneu

F       F     T      T        T

F       F     T      F        T

F      T      T      T       T

T       T     T      T       T

F       T     F      T        T

)|( TPneumoniaFever P

Pneumonia

CoughFeverPaleness High WBC

Learning of BBN parameters. Example.

Learn:

Step 2: Select values of the random variable defining the 

distribution of Fever

Pal  Fev  Cou HWB  Pneu

F      F T      T        T

F       F T      F        T

F      T T      T       T

T       T T      T       T

F       T  F      T        T

)|( TPneumoniaFever P

Pneumonia

CoughFeverPaleness High WBC
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Learning of BBN parameters. Example.

Learn:

Step 2: Ignore the rest

Fev

F

F

T

T

T

)|( TPneumoniaFever P

Pneumonia

CoughFeverPaleness High WBC

Learning of BBN parameters. Example.

Learn:

Step 3a: Learning the ML estimate

Fev

F

F

T

T

T

)|( TPneumoniaFever P

)|( TPneumoniaFever P

Pneum =T   0.6     0.4    

T         F

Pneumonia

CoughFeverPaleness High WBC
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Learning of BBN parameters. Bayesian learning.

Learn:

Step 3b: Learning the Bayesian posterior

Assume the prior

Fev

F

F

T

T

T

Posterior:

)|( TPneumoniaFever P

Pneumonia

CoughFeverPaleness High WBC

)4,3(~| BetaTPneumoniaFever 

)6,6(~| BetaTPneumoniaFever 

5.0
266

16
| 




TPneumoniaFever

MAP

MAP estimates

Pneum =T   0.5     0.5    

T         F

Estimates of parameters of BBN

Much like multiple  coin toss or roll of a dice problems. 

• A “smaller” learning problem corresponds to the learning of 
exactly one conditional distribution 

Example:

Problem: How to pick the data to learn?

Answer:

1. Select data points with Pneumonia=T

(ignore the rest)

2. Focus on (select) only values of the random variable 
defining the distribution  (Fever)

3. Learn the parameters of the local conditionals the same 
way as we learned the parameters of a biased coin or a die

)|( TPneumoniaFever P


