CS 2750 Machine Learning Lecture 15

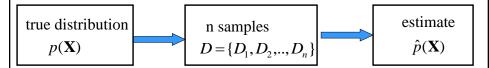
Bayesian belief networks II

Milos Hauskrecht milos@pitt.edu 5329 Sennott Square

Density estimation

Data: $D = \{D_1, D_2, ..., D_n\}$ $D_i = \mathbf{x}_i$ a vector of attribute values

Objective: try to estimate the underlying true probability distribution over variables X, p(X), using examples in D



Standard (iid) assumptions: Samples

- · are independent of each other
- come from the same (identical) distribution (fixed p(X))

Modeling complex distributions

Question: How to model and learn complex multivariate distributions $\hat{p}(\mathbf{X})$ with a large number of variables?

Example: modeling of disease – symptoms relations

- **Disease:** pneumonia
- Patient symptoms (findings, lab tests):
 - Fever, Cough, Paleness, WBC (white blood cells) count,
 Chest pain, etc.
- Model of the full joint distribution: P(Pneumonia, Fever, Cough, Paleness, WBC, Chest pain)

One probability per assignment of values to variables: P(Pneumonia =T, Fever =T, Cought=T, WBC=High, Chest pain=T)

Bayesian belief networks (BBNs)

Bayesian belief networks (late 80s, beginning of 90s) **Key features:**

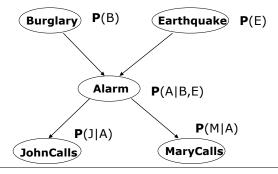
- Represent the full joint distribution over the variables more compactly with a **smaller number of parameters**.
- Take advantage of **conditional and marginal independences** among random variables
- X and Y are independent P(X,Y) = P(X)P(Y)
- · X and Y are conditionally independent given Z

$$P(X,Y \mid Z) = P(X \mid Z)P(Y \mid Z)$$
$$P(X \mid Y,Z) = P(X \mid Z)$$

Bayesian belief network

1. Directed acyclic graph

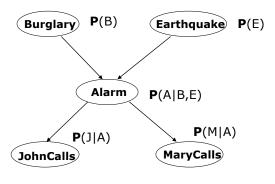
- **Nodes** = random variables Burglary, Earthquake, Alarm, Mary calls and John calls
- **Links** = direct (causal) dependencies between variables. The chance of Alarm being is influenced by Earthquake, The chance of John calling is affected by the Alarm

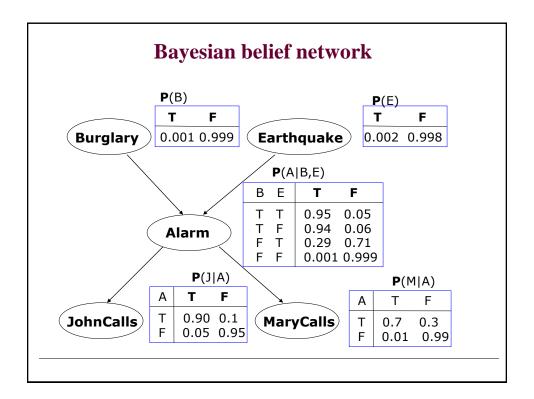


Bayesian belief network

2. Local conditional distributions

relating variables and their parents





Full joint distribution is defined in terms of local conditional distributions (obtained via the chain rule):

$$\mathbf{P}(X_{1}, X_{2}, ..., X_{n}) = \prod_{i=1,...n} \mathbf{P}(X_{i} \mid pa(X_{i}))$$

Example:

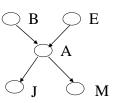
Assume the following assignment of values to random variables

$$B = T, E = T, A = T, J = T, M = F$$

Then its probability is:

$$P(B = T, E = T, A = T, J = T, M = F) =$$

$$P(B = T)P(E = T)P(A = T \mid B = T, E = T)P(J = T \mid A = T)P(M = F \mid A = T)$$



Bayesian belief networks (BBNs)

Bayesian belief networks

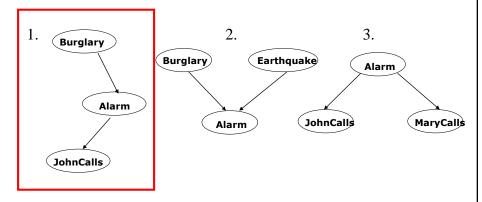
- Represent the full joint distribution over the variables more compactly using the product of local conditionals.
- But how did we get to local parameterizations?

Answer:

- Chain rule +
- Graphical structure encodes conditional and marginal independences among random variables
- A and B are independent P(A, B) = P(A)P(B)
- A and B are conditionally independent given C $P(A \mid C, B) = P(A \mid C) \qquad P(A, B \mid C) = P(A \mid C)P(B \mid C)$
- The graph structure implies the decomposition !!!

Independences in BBNs 3 basic independence structures: 1. Burglary 2. 3. Burglary Alarm JohnCalls MaryCalls

Independences in BBNs



1. JohnCalls is independent of Burglary given Alarm

$$P(J \mid A, B) = P(J \mid A)$$

$$P(J,B\mid A) = P(J\mid A)P(B\mid A)$$

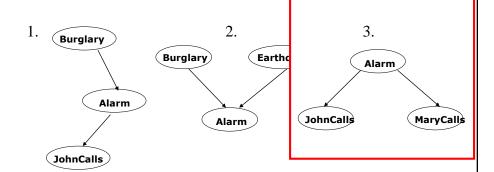
Independences in BBNs

1. Burglary Earthquake Alarm Alarm InCalls MaryCalls

2. Burglary **is independent** of Earthquake (not knowing Alarm) Burglary and Earthquake **become dependent** given Alarm!!

$$P(B,E) = P(B)P(E)$$

Independences in BBNs



3. MaryCalls is independent of JohnCalls given Alarm

$$P(J \mid A, M) = P(J \mid A)$$

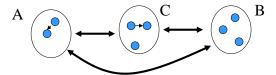
$$P(J, M \mid A) = P(J \mid A)P(M \mid A)$$

Independences in BBN

- BBN distribution models many conditional independence relations among distant variables and sets of variables
- These are defined in terms of the graphical criterion called dseparation
- D-separation and independence
 - Let X,Y and Z be three sets of nodes
 - If X and Y are d-separated by Z, then X and Y are conditionally independent given Z
- D-separation:
 - A is d-separated from B given C if every undirected path between them is **blocked with C**
- Path blocking
 - 3 cases that expand on three basic independence structures

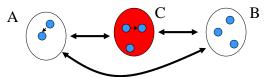
Undirected path blocking

A is d-separated from B given C if every undirected path between them is **blocked**



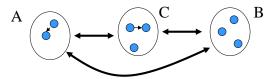
Undirected path blocking

A is d-separated from B given C if every undirected path between them is **blocked**

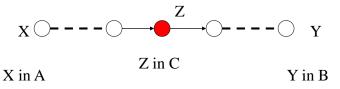


Undirected path blocking

A is d-separated from B given C if every undirected path between them is **blocked**



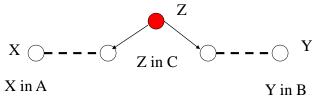
• 1. Path blocking with a linear substructure



Undirected path blocking

A is d-separated from B given C if every undirected path between them is **blocked**

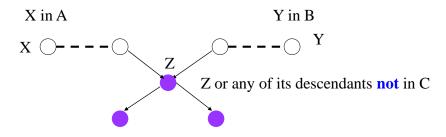
• 2. Path blocking with the wedge substructure



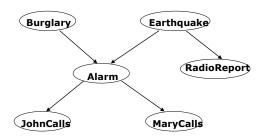
Undirected path blocking

A is d-separated from B given C if every undirected path between them is **blocked**

• 3. Path blocking with the vee substructure

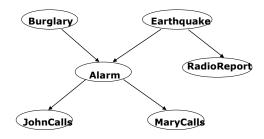


Independences in BBNs



• Earthquake and Burglary are independent given MaryCalls

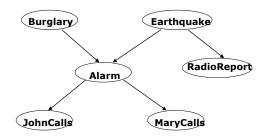
Independences in BBNs



- Earthquake and Burglary are independent given MaryCalls **F**
- Burglary and MaryCalls are independent (not knowing Alarm)

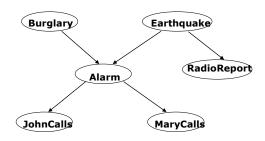
CS 1571 Intro to Al

Independences in BBNs



- Earthquake and Burglary are independent given MaryCalls
- Burglary and MaryCalls are independent (not knowing Alarm) $\ \mathbf{F}$
- Burglary and RadioReport are independent given Earthquake ?

Independences in BBNs

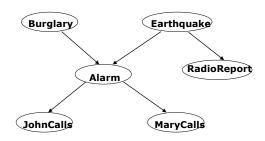


- Earthquake and Burglary are independent given MaryCalls **F**
- Burglary and MaryCalls are independent (not knowing Alarm) F
- Burglary and RadioReport are independent given Earthquake T

?

• Burglary and RadioReport are independent given MaryCalls

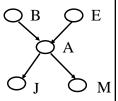
Independences in BBNs



- Earthquake and Burglary are independent given MaryCalls **F**
- Burglary and MaryCalls are independent (not knowing Alarm) $\ \mathbf{F}$
- Burglary and RadioReport are independent given Earthquake
- Burglary and RadioReport are independent given MaryCalls **F**

Rewrite the full joint probability using the product rule:

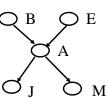
$$P(B = T, E = T, A = T, J = T, M = F) =$$



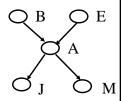
Full joint distribution in BBNs

$$P(B=T, E=T, A=T, J=T, M=F) =$$
Product rule

Product rule
$$= P(J = T \mid B = T, E = T, A = T, M = F)P(B = T, E = T, A = T, M = F)$$



Rewrite the full joint probability using the product rule:

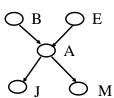


$$P(B=T, E=T, A=T, J=T, M=F) =$$
Product rule

$$= P(J = T \mid B = T, E = T, A = T, M = F) P(B = T, E = T, A = T, M = F)$$

$$= P(J = T \mid A = T)P(B = T, E = T, A = T, M = F)$$

Full joint distribution in BBNs

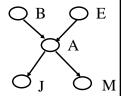


$$P(B = T, E = T, A = T, J = T, M = F) =$$

$$= P(J = T \mid B = T, E = T, A = T, M = F)P(B = T, E = T, A = T, M = F)$$

$$= P(J = T \mid A = T)P(B = T, E = T, A = T, M = F)$$
Product rule
$$P(M = F \mid B = T, E = T, A = T)P(B = T, E = T, A = T)$$

Rewrite the full joint probability using the product rule:



$$P(B = T, E = T, A = T, J = T, M = F) =$$

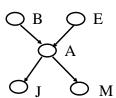
$$= P(J = T \mid B = T, E = T, A = T, M = F)P(B = T, E = T, A = T, M = F)$$

 $= P(J = T \mid A = T)P(B = T, E = T, A = T, M = F)$

$$\frac{P(M = F \mid B = T, E = T, A = T)}{P(M = F \mid A = T)}P(B = T, E = T, A = T)$$

$$P(M = F \mid A = T)P(B = T, E = T, A = T)$$

Full joint distribution in BBNs



$$P(B = T, E = T, A = T, J = T, M = F) =$$

$$= P(J = T \mid B = T, E = T, A = T, M = F)P(B = T, E = T, A = T, M = F)$$

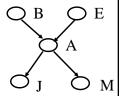
$$= P(J = T \mid A = T)P(B = T, E = T, A = T, M = F)$$

$$P(M = F \mid B = T, E = T, A = T)P(B = T, E = T, A = T)$$

$$P(M = F \mid A = T)P(B = T, E = T, A = T)$$

$$P(A = T \mid B = T, E = T)P(B = T, E = T)$$

Rewrite the full joint probability using the product rule:



$$P(B = T, E = T, A = T, J = T, M = F) =$$

$$= P(J = T \mid B = T, E = T, A = T, M = F)P(B = T, E = T, A = T, M = F)$$

$$= P(J = T \mid A = T)P(B = T, E = T, A = T, M = F)$$

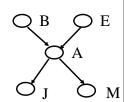
$$P(M = F \mid B = T, E = T, A = T)P(B = T, E = T, A = T)$$

$$P(M = F \mid A = T)P(B = T, E = T, A = T)$$

$$P(A = T \mid B = T, E = T)P(B = T, E = T)$$

$$P(B = T)P(E = T)$$

Full joint distribution in BBNs



$$P(B = T, E = T, A = T, J = T, M = F) =$$

$$= P(J = T \mid B = T, E = T, A = T, M = F)P(B = T, E = T, A = T, M = F)$$

$$= P(J = T \mid A = T)P(B = T, E = T, A = T, M = F)$$

$$P(M = F \mid B = T, E = T, A = T)P(B = T, E = T, A = T)$$

$$P(M = F \mid A = T)P(B = T, E = T, A = T)$$

$$P(A = T \mid B = T, E = T)P(B = T, E = T)$$

$$P(B = T)P(E = T)$$

$$= P(J = T \mid A = T)P(M = F \mid A = T)P(A = T \mid B = T, E = T)P(B = T)P(E = T)$$

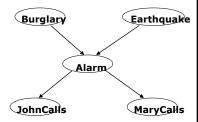
Parameter complexity problem

• In the BBN the **full joint distribution** is defined as:

$$\mathbf{P}(X_1, X_2, ..., X_n) = \prod_{i=1,...n} \mathbf{P}(X_i \mid pa(X_i))$$
• What did we save?

Alarm example: binary (True, False) variables

of parameters of the full joint:



Parameter complexity problem

• In the BBN the **full joint distribution** is defined as:

$$\mathbf{P}(X_1, X_2, ..., X_n) = \prod_{i=1}^n \mathbf{P}(X_i \mid pa(X_i))$$

• What did we save?

Alarm example: binary (True, False) variables

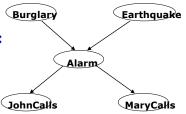
of parameters of the full joint:

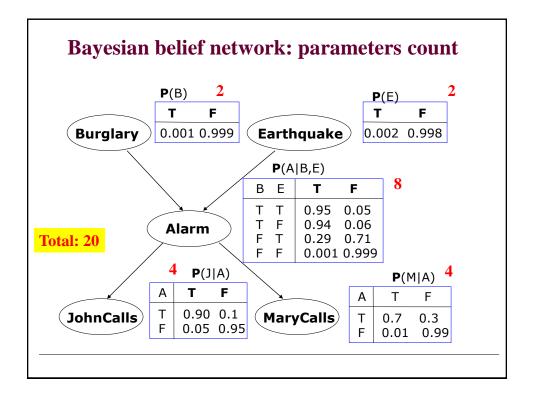
$$2^5 = 32$$

One parameter depends on the rest:

$$2^5 - 1 = 31$$

of parameters of the BBN:





Parameter complexity problem

• In the BBN the **full joint distribution** is defined as:

$$\mathbf{P}(X_1, X_2, ..., X_n) = \prod_{i=1, \dots, n} \mathbf{P}(X_i \mid pa(X_i))$$

• What did we save?

Alarm example: 5 binary (True, False) variables

of parameters of the full joint:

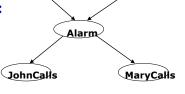
$$2^5 = 32$$

One parameter depends on the rest:

$$2^5 - 1 = 31$$

of parameters of the BBN:

$$2^3 + 2(2^2) + 2(2) = 20$$

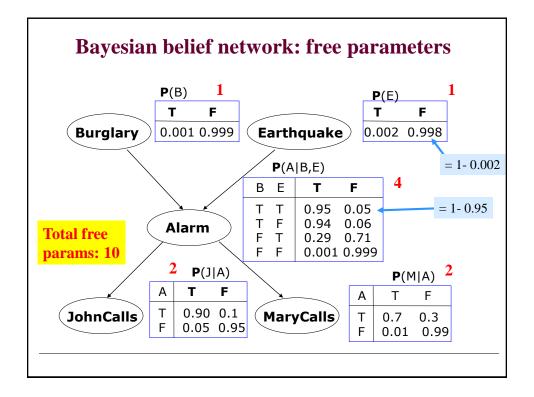


Earthquake

Burglary

One parameter in every conditional depends on the rest:

?



Parameter complexity problem

• In the BBN the **full joint distribution** is defined as:

$$\mathbf{P}(X_1, X_2, ..., X_n) = \prod_{i=1, n} \mathbf{P}(X_i \mid pa(X_i))$$

• What did we save?

Alarm example: 5 binary (True, False) variables

of parameters of the full joint:

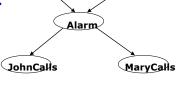
$$2^5 = 32$$

One parameter depends on the rest:

$$2^5 - 1 = 31$$

of parameters of the BBN:

$$2^3 + 2(2^2) + 2(2) = 20$$



Earthquake

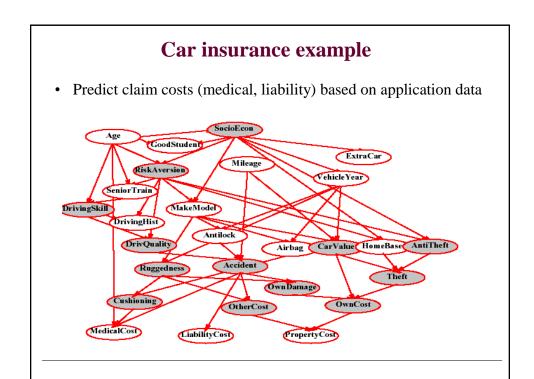
Burglary

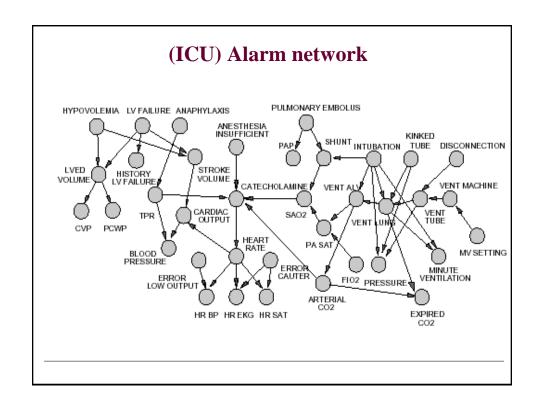
One parameter in every conditional depends on the rest:

$$2^2 + 2(2) + 2(1) = 10$$

BBNs examples

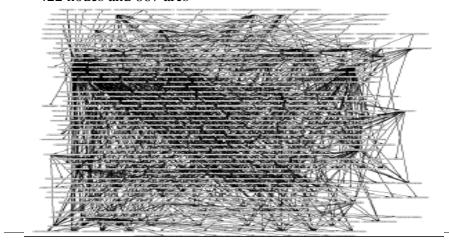
- In various areas:
 - Intelligent user interfaces (Microsoft)
 - Troubleshooting, diagnosis of a technical device
 - Medical diagnosis:
 - Pathfinder CPSC
 - Munin
 - QMR-DT
 - Collaborative filtering
 - Military applications
 - Insurance, credit applications





CPCS

- Computer-based Patient Case Simulation system (CPCS-PM) developed by Parker and Miller (at University of Pittsburgh)
- 422 nodes and 867 arcs



Naïve Bayes model

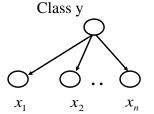
A special (simple) Bayesian belief network

- Defines a generative classifier model
- Model of $P(\mathbf{x}, \mathbf{y}) = P(\mathbf{x} \mid \mathbf{y}) P(\mathbf{y})$
 - Class variable yp(y)
 - Attributes are independent given y

$$p(\mathbf{x} | y = i) = \prod_{j=1}^{d} p(x_j | y = i)$$

Learning:

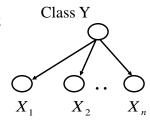
- Parameterize models of p(y) and all $p(x_i | y=i)$
- ML estimates of the parameters



Naïve Bayes model

A special (simple) Bayesian belief network

- Defines a generative classifier model
- Model of $P(\mathbf{x}, \mathbf{y}) = P(\mathbf{x} \mid \mathbf{y}) P(\mathbf{y})$



Classification: given *x* select the class

- Select the class with the maximum posterior
- Calculation of a posterior is an example of BBN inference

$$p(y=i \mid \mathbf{x}) = \frac{p(y=i)p(\mathbf{x} \mid y=i)}{\sum_{u=1}^{k} p(y=u)p(\mathbf{x} \mid y=u)} = \frac{p(y=i)\prod_{j=1}^{d} p(x_{j} \mid y=i)}{\sum_{u=1}^{k} p(y=u)\prod_{j=1}^{d} p(x_{j} \mid y=u)}$$

Remember: we can calculate the probabilities from the full joint

Learning of BBN

Learning.

- Learning of parameters of conditional probabilities
- · Learning of the network structure

Variables:

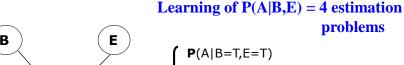
- **Observable** values present in every data sample
- **Hidden** they values are never observed in data
- Missing values values sometimes present, sometimes not

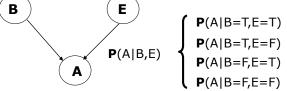
Next:

- · Learning of the parameters of BBN
- · Values for all variables are observable

Estimation of parameters of BBN

- Idea: decompose the estimation problem for the full joint over a large number of variables to a set of smaller estimation problems corresponding to local parent-variable conditionals.
- Example: Assume A,E,B are binary with *True*, *False* values





 Assumption that enables the decomposition: parameters of conditional distributions are independent

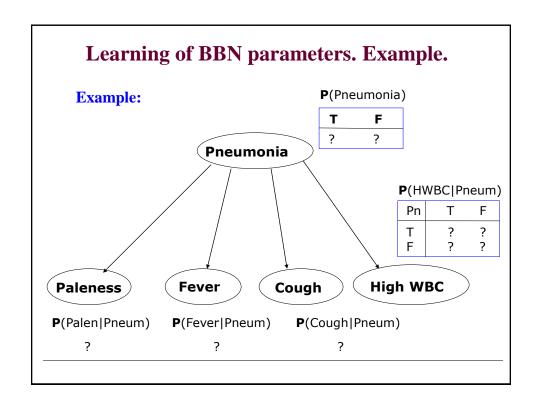
Estimates of parameters of BBN

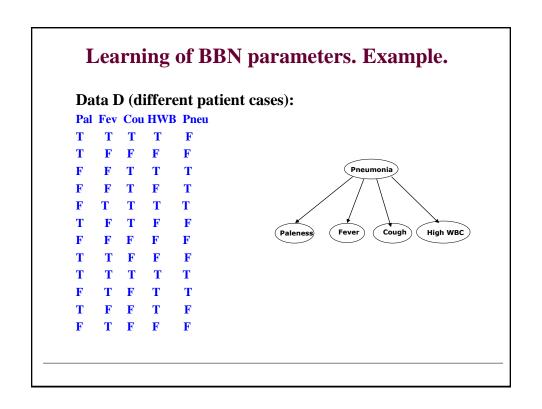
- Two assumptions that permit the decomposition:
 - Sample independence

$$P(D \mid \mathbf{\Theta}, \xi) = \prod_{u=1}^{N} P(D_u \mid \mathbf{\Theta}, \xi)$$

- Parameter independence # of nodes
$$p(\mathbf{\Theta} \mid D, \xi) = \prod_{i=1}^{n} \prod_{j=1}^{q_i} p(\theta_{ij} \mid D, \xi)$$

Parameters of **each conditional** (one for every assignment of values to parent variables) can be learned independently





Estimates of parameters of BBN

- Much like multiple **coin toss or roll of a dice** problems.
- A "smaller" learning problem corresponds to the learning of exactly one conditional distribution
- Example:

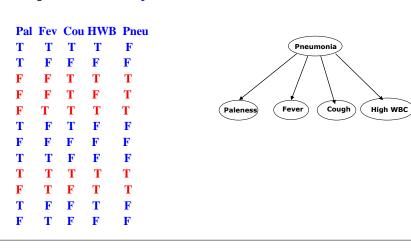
 $\mathbf{P}(Fever | Pneumonia = T)$

• **Problem:** How to pick the data to learn?

Learning of BBN parameters. Example.

Learn: P(Fever | Pneumonia = T)

Step 1: Select data points with Pneumonia=T

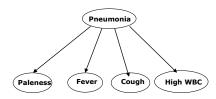


Learning of BBN parameters. Example.

Learn: P(Fever | Pneumonia = T)

Step 1: Ignore the rest

Pal Fev Cou HWB Pneu F F T T T F F T F T F T T T T T T T T T

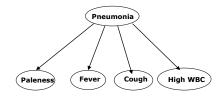


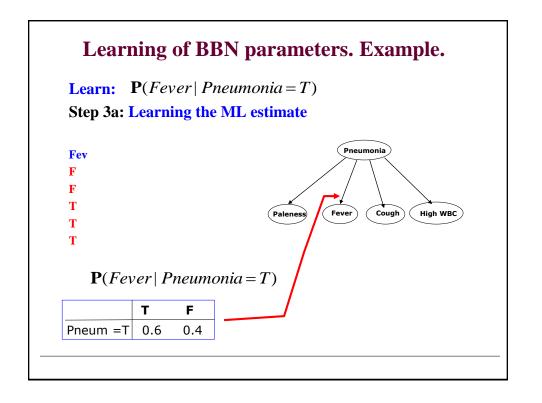
Learning of BBN parameters. Example.

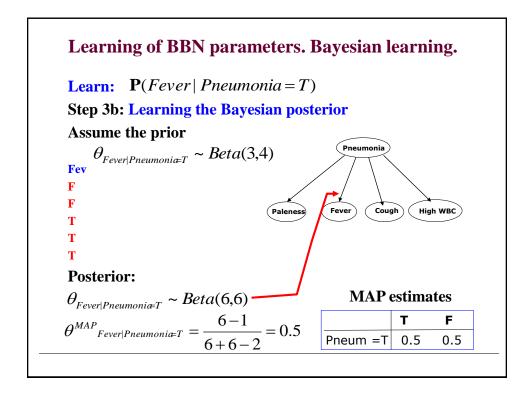
Learn: P(Fever | Pneumonia = T)

Step 2: Select values of the random variable defining the distribution of Fever

Pal Fev Cou HWB Pneu F F T T T F F T F T F T T T T T T F T T







Estimates of parameters of BBN

Much like multiple **coin toss or roll of a dice** problems.

 A "smaller" learning problem corresponds to the learning of exactly one conditional distribution

Example:

 $\mathbf{P}(Fever | Pneumonia = T)$

Problem: How to pick the data to learn?

Answer:

- Select data points with Pneumonia=T (ignore the rest)
- 2. Focus on (select) only values of the random variable defining the distribution (Fever)
- 3. Learn the parameters of the local conditionals the same way as we learned the parameters of a biased coin or a die