CS 2750 Machine Learning
Lecture 13

Multilayer neural networks

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Classification with the linear model

The majority of the models covered so far are linear
Example: 2 classes (blue and red points)

2

mailto:milos@cs.pitt.educ

Modeling nonlinearities

+ Feature (basis) functions to model nonlinearities

Linear regression Logistic regression
m m

f(x):WO+ZWj¢j (x) f(X):g(WO+ZWj¢j(X))

#;(xX) -an arbitrary function of x

Modeling nonlinearities
Feature (basis) functions model nonlinearities

Linear regression Logistic regression
m m

f(X):WO+ZWj¢j (x) f(x)zg(W0+ZWj¢j ()

Advantage:

» The same problem as learning of the weights of linear units
Limitations/problems:

« How to define the right set of basis functions

« Many basis functions - many weights to learn

Modeling nonlinearities

Support vector machines model nonlinearities via:
+ feature expansion
+ Folded in efficient kernels

Advantage:

 The learning problem is similar to the problem of learning
weights of a linear model

« Efficient kernels reduce the computational complexity

* Problem:

» How to define the right the kernels

Multi-layered neural networks

An alternative way to model nonlinearities for regression
[classification problems

Idea: Cascade several simple nonlinear models (e.g. logistic
units) to approximate nonlinear functions for regression
[classification. Learn/adapt these simple models.

Motivation: neuron connections

Cell body or Soma

Multilayer neural network

Also called a multilayer perceptron (MLP)
Cascades multiple non-linear (e.g. logistic regression) units

Example: (2 layer) classifier with non-linear decision boundaries
1

f p(y =1[x)

Output layer

Multilayer neural network

« Models non-linearity through nonlinear switching units
« Can be applied to both regression and binary classification

problems
Input layer Hidden layer Output layer
regression
f(x)=f(x,w)

Z
1(classification

W, (2
O O/ / ff(x)—p(y 1| x,w)

option

Why we need nonlinearities? Why not
multiple linear units

Cascading of multiple linear units is equivalent to one linear unit

f (x)

f(x) =Dy, +b,,2, +b,,7,

Why we need nonlinearities? Why not
multiple linear units

Cascading of multiple linear units is equivalent to one linear unit

f (x)

f(x)= bO,l + b1,121 + b2,122

= bO,l + bl,l(aO,l + afl,lxl + a2.1)(2) + b2,1 (aO,Z + a2,1)(1 + aZ,ZXZ)

Why we need nonlinearities? Why not
multiple linear units

Cascading of multiple linear units is equivalent to one linear unit

f (x)

f(x) =by, +by,;z,+b,,7,

=by; +0,5 (801 35, X +8,,%) +0,,(8, +@,,% +8,,X%,)

=Dy, +b 8y, +ba % +by,8, . X, +0,,8,, +0,,8,,% +b, 3, ,X,
=Dy, +bag, +by 580, + (0,8, +0,,8,,)% + (0,3, +D,,3,,)%,

=c+d,x +d,x,

Multilayer neural network

« Non-linearities are modeled using multiple hidden
nonlinear units (organized in layers)
« The output layer determines whether it is a regression or a
binary classification problem
Output layer

Input layer Hidden layers regression
f(x)=f(x,w)
Xl
X . .
2 Nonlinearities .
. classification
X, /0= py=1xw)

option

Learning with MLP

* How to learn the parameters of the neural network?
+ Gradient descent algorithm
— Weight updates based on the error: J (D, w)

wW<«—w-aV, J(D,w)

+ We need to compute gradients for weights in all units
» Can be computed in one backward sweep through the net !!!

e
O\

P
<

» The process is called back-propagation

CS 2750 Machine Learning

Backpropagation: error function

Input layer Hidden layers regression
f(x)=f(x,w)
Xl
X, . .
Nonlinearities
. classification
Xg / f f(x)=p(y=1/x,w)

option

« Error function: J(D,w) (online) error where D is a data point

— Regression , r%)risfsziovg
J(D,w) =(y, — f(x,)) ,
— Classification classification

J(D,w)=—log p(y, | f(x,)) J 109=piy=tixw

Backpropagation

(k-1)-th level k-th level (k+1)-th level
x,(k-1) % (K) X, (k +1)
O l " (")\.Zz(k)f J w (+ 1 QZ (k+1)@fw

X (k) - output of the unit i on level k
% (k) = 9(z;(k))
z;(k) - input to the sigmoid function on level k
z,(K) = wo(k)+zw ()%, (k=)
w; (k) - weight between units j and i on levels (k-1) and k

Backpropagation

k-th level (k+1)-th level

(k-1)-th level

x; (k—1)

l Y (k)\z_bf‘\"‘l W, (k+1) p z(k+1)f J
N I e

z,(k) = Wo(k)+ZW (K)x; (k—1)

J(D,w)

- Gradient descent: (k)< w (k)—ar—2
O o

e, X (K)=0(z; (k)) X, (k +1)

O Dy~ BOW) (k) k% (k-1
ow, ; (k) oz, (k) ow, ; (k) o (g(u))

0
o, (k) = J(D, (k-
) oz; (k) (B.w) %D og(u)

| / \ au
of (g(u)) og(u)

ou

Backpropagation

(k-1)-th level k-th level (k+1)-th level

. (k) ey (K) = 902, (k)) X, (k +1)

l Wi (k)\z fl W, (k+1) " z(k+1)f J
TS XN

z,(k) = Wo(k)+ZW (K)x; (k—1)

 Derivation: 5.(k) = 3(D,w) = 0 3D, *ax, (k)
azi(k) ox, (k) oz, (K)
Backpropagation
(k-1)-th level k-th level (k+1)-th level

X, (k—1) xi(k)=g(zi(k» T X(k+D)

l Y (k)\z_bf‘\"‘l W, (k+1) p z(k+1)f J
N I e

z,(k) = Wo(k)+ZW (K)x; (k—1)

 Derivation: 5.(K) = o 3(D.w) - 0 (D, *axi(k)
oz,(K) o, (K) oz, (k)
0 L0z, (k+1)
ox (" (P W))= Zaz (k+ 1) ')l ox.(K)

o (k +1) w,yi('k+1)

Backpropagation

k-th level (k+1)-th level

(k-1)-th level

. (k) e, % (K) = 0(z; (k)) X, (k +1)

l Wi (k)\z fl W, (k+1) " z(k+1)f J
TS XN

z,(k) = Wo(k)+ZW (K)x; (k—1)

J(D,w)—LJ(D w2 (K)
a2, (k) % (K) 22,(K)

e Derivation: 5(K) =

b) Conk+1) oK) e
i O Z.:laz,(k+1)J(D’V\I')l GRG0 % ((=x,())
|
o, (k+1) w,yi('k+1)
Backpropagation
(k-1)-th level k-th level (k+1)-th level
"%mxxxm=gamm) T Xy (k4D)

x; (k—1)

l Y (k)\z_bf‘\"‘l W, (k+1) p z(k+1)f J
N I e

z,(k) = Wo(k)+ZW (K)x; (k—1)

 Derivation: 5(K) = 0 ID.w) = 0 JD.w)*axi(k)
oz (k) ox; (k) oz; (k)
d Lo (k+1) | ox(K) | »
ox (" (P W))= Zaz (k+ 1) ')l K azi(k)_xi(k)(l % (9)
5,(k+1) w,yi('k+1)

5 (k) = {25. (k+Dw,; (k +1)Wxi (k)A—x (k)

10

Backpropagation

(k-1)-th level k-th level (k+1)-th level

X, (k—1) e, K0 = 9@))

l W (k)\‘Z -(/)-1 wy; (k+1) :QZ (k+1)<{ l
z;,(k)= Wo(k)+zw (K)x; (k1)
« Gradient:

w, (k) < w, ; (K) a3, (kK)x, (k—1)]

0 =[25.(k+1)w.,i<k+1)}xi (k)1 (k)

 Last unit (is the same as for the regular linear units),

E.g. for regression:
é} (K) = _(yu —f (Xu 'W))

Backpropagation
Update weight w, ; (k) using data D D={<x,y>}
w, (k) < w, ; (K)o J(D,w)

ow; ; (k)

Let &k = J(D,w)

oz, (k)

0 D)= PO ()
ow; ; (k) oz; (k) ow, ;(k)

Then:

=5,(k)%, (k-1)

S.t. 5,(k) is computed fromx; (k) and the next layer &, (k +1)
6;(k) = {Z Sy (k+Dw,; (k +1)}Xi (k)1 —x; (k)
|
Last unit (is the same as for the regular linear units):

6 (K)=—(y, = f (x,,w))
It is the same for the classification with the log-likelihood
measure of fit and linear regression with least-squares error!!!

11

Learning with MLP

« Online gradient descent algorithm
— Weight update:

0

Wij (k) < Wi j (k) - 8W| J (k) onlme(D)
a 0nI|ne(D W) azi (k) _ B
ow,, (k) T (D0 =55) w0~ (o, (=0

W ; (K) <= w; ; (k) —ad (K)x; (k =1)

x;(k-1) - j-th output of the (k-1) layer

5,(k) - derivative computed via backpropagation
a - a learning rate

Online gradient descent algorithm for MLP

Online-gradient-descent (D, number of iterations)
Initialize all weights W, ; (k)
for i=1:1: number of iterations
do select a data point D,=<x,y> from D

set learning rate «
compute outputs X; (k) for each unit
compute derivatives ; (k) via backpropagation
update all weights (in parallel)

W ; (K) <= w; ; (k) —ad (K)x; (k -1)

end for
return weights w

12

« linear decision boundary does not exist

15F

Xor Example

COutput

o

T

e

o
o

Xor example. Linear unit

e
e w———

13

Xor example.
Neural network with 2 hidden units

Qutput

RS
\\s N

S
= \\\‘\

fAPE:
.
s
17
o
.

=

Sy

Xor example.
Neural network with 10 hidden units

Qutput

14

Neural networks

Activation (transfer) functions

» Determine how inputs are transformed to output

Possible choices of nonlinear transfer functions:

+ Logistic func;ion
1@)= =

« Hyperbolic tangent

1@ =7=a- f(2)

2 :
f(z)=tanh(z) = —-1 f(z)'=1- f(2)?
1+e
« Rectified linear function g m—
_ 0 z<O ! T W
&= - I e

Limitation of standard NNs

Standard NN:

» do not scale well to high dimensional data (e.g. images)
— 100x100 image + 100 hidden units = 1 million parameters.
— Qverfitting;
— Tremendous requirements of computation and storage.

» Sensitive to small translation of inputs
— Images: objects can have size, slant or position variations
— Speech: varying speed, pitch or intonation.

 Ignores the topology of the input

— i.e. the input variables can be presented in any order without
affecting the outcome of training.

— However, images or speech have a strong local structure
* E.g. pixels nearby are highly correlated.

15

Deep learning

» Deep learning. Machine learning algorithms based on
learning multiple levels of representation / abstraction. More
than one layer of non-linear feature transformation.

Low-Level| |Mid-Level| |High-Levell Trainable
.- — > —| —
Feature Feature Feature Classifier
4 A

Deep neural networks

Early efforts
+ Optical character recognition — digits 20x20
— Automatic sorting of mails
— 5 layer network with multiple output functions and somewhat

restricted topology

10 outputs (0,1,...9) layer Neurons Weights

5 10 3000
4 300 1200
3 1200 50000
2 784 3136
1 3136 78400

20x20 = 400 inputs

16

Convolutional NN

Take advantage of the local structure of the data (image, speech)

Convolution in Machine Learning
« the input array HERE
— e.g. image pixels. —=

+ akernel or filter. —
— asmaller (local) matrix of
parameters RS || A P
« Output: a feature map

— Filter applied to the image

Feature Extraction using Convolution

 The statistics of one part of

the image are the same as any 3/%,10/0
other part. 0y 141/0| 14
: - 0/04% 1)1
. Mean!ng that different parts ololil1lo
of an image can share the ol1l1lo0l0
same feature parameters | Convolved
(kernel). dhaa Feature

» Use this kernel to convolve a
set of features.

» This is called one feature
mapping.

17

Feature Extraction using Convolution

4 features on full data (image) 4 features on the local data

@) e 000 0
O e 0600 0
@ 00000
[o000 O

/) /4 N

s & & & & 8 & 8 e & & & & @& 8 00
Fully connected layer Locally connected layer
9 weights per hidden unit 5 weights per hidden unit
9x 4 =36 weights 5x 4 =20 weights

Increased #input, #hidden unit, but fewer weights

Pooling (Subsampling, Down-sampling)

Assumption: Features useful in one region are likely to be
useful for other regions.

To describe a large image, statistics can be aggregated.

For example, one can calculate mean or max of a particular
feature over a region.

— Called mean pooling, max pooling respectively.
These summary statistics are much lower in dimension.
Also can improve results (less-overfitting).

18

Convolution and Pooling

Convolution Pooling
1/1]1]o]o
of1/1|1]0| |4 1
Ox:l Oﬂ 1x1 1 1
olof1[1]0
0|1(1|0(0

Image Convolved

8 Feature Convolved Pooled

feature feature

Convolutional NN

CNN = (= 1) convolution layer(s) + standard NN
One convolution layer is:
— Convolution operation + activation function + pooling

You can view the convolution layer(s) as a feature
extractor.

— Input: raw image pixels, raw time series
— Output: summarized features.

28x28

INPUT feature maps feature maps feature maps feature maps QUTPUT
4@24x24 4@12x12 12@8x8 12@4x4 26@1x1

19

CNN vs. NN

* NN is sensitive to local distortions of unstructured data.

— NN can theoretically be trained to be invariant to these
distortions, probably resulting in multiple units with
identical weights.

— But such a training task requires a large number of training
instances.

« CNN with pooling can be invariant to small translations:
— Shifts (automatically)
— Rotation (with extra mechanism)

Object Recognition Task

» ImageNet Data (2009 - 2016)

20

ImageNet 2012

Data
— Size:
* Number of images
— 1.2 million training images
— 50K validation images
— 150K testing images
 Variable image size
— Supervised task
» Labeled using Amazon’s Mechanical Turk

— Categories:
« 1000 categories (objects)
— Approximately 1000 in each categor
— RGB pictures
Goal
Provide a probability for different
categories that an image can belong to

Object Recognition

* ImageNet
— Achieves state-of-
the-art on many
object recognition
tasks.

21

