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Support vector machines 

• What models define linear decision boundaries?  
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Linearly separable classes 

Linearly separable classes:  

There is a hyperplane  

that separates training instances with no error 
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Learning linearly separable sets 

Finding weights for linearly  

separable classes:  

•  Linear program (LP) solution 

• It finds weights that satisfy  

      the following constraints: 

 

 

 

  

 

Property: if there is a hyperplane separating the examples, the 

linear program finds the solution 
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Optimal separating hyperplane 

• Problem:  

• There are multiple hyperplanes that separate the data points 

• Which one to choose?   
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Optimal separating hyperplane 

• Problem: multiple hyperplanes that separate the data exists 

– Which one to choose?   

• Maximum margin choice: maximum distance of                

– where       is the shortest distance of a positive example 

from the hyperplane (similarly       for negative examples) 

 Note: a margin classifier is a classifier for which we can calculate the distance of each 

example from the decision boundary 
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Maximum margin hyperplane 

• For the maximum margin hyperplane only examples on the 

margin matter (only these affect the distances) 

• These are called support vectors  
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Finding maximum margin hyperplanes 

• Assume that examples in the training set are                 such 

that   

• Assume that all data satisfy: 

 

 

 

• The inequalities can be combined as: 

 

 

• Equalities define two hyperplanes: 
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Finding the maximum margin hyperplane 

• Geometrical margin: 

– measures the distance of a point x from the hyperplane 
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Maximum margin hyperplane 

• We want to maximize 

 

• We do it by minimizing 

 

 

 

– But we also need to enforce the constraints on data 

instances:  
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Maximum margin hyperplane 

• Solution: Incorporate constraints into the optimization 

• Optimization problem  (Lagrangian) 

 

 

 

• Minimize with respect to               (primal variables) 

• Maximize with respect to         (dual variables)  
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Max margin hyperplane solution 

• Set derivatives to 0 (Kuhn-Tucker conditions) 

 

 

 

 

• Now we need to solve for Lagrange parameters (Wolfe dual) 

 

 

 

 

 

• Quadratic optimization problem: solution        for all i  
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Maximum margin solution 

• The resulting parameter vector        can be expressed as: 

 

 

• The parameter         is obtained from  

 

Solution properties 

•                for all points that are  

      not on the margin 

• The decision boundary: 
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Support vector machines: solution property 

• Decision boundary defined by a set of support vectors SV 

and their alpha values   

– Support vectors = a subset of datapoints in the training 

data that define the margin  

 

 

• Classification decision for new x: 

 

 

 

• Note that we do not have to explicitly compute          

– This will be important for the nonlinear (kernel) case 
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Lagrange multipliers 

Support vector machines 

 

 

 

 

 

• The decision boundary: 

 

 

• Classification decision: 
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