CS 2750 Machine Learning Lecture 11

Evaluation of classifiers

Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square

Classification model learning

Learning:

- Many different ways and objective criteria used to learn the classification models. Examples:
 - Mean squared errors to learn the discriminant functions
 - Negative log likelihood (logistic regression)

Evaluation:

- One possibility: Use the same error criteria as used during the learning (apply to train & test data). Problems:
 - May work for discriminative models
 - Harder to interpret for humans.
- Question: how to more naturally evaluate the classifier performance?

Evaluation of classification models

For any data set we use to test the classification model on we can build a **confusion matrix**:

- Counts of examples with:
- class label ω_i that are classified with a label α_i

target

predict

$$\begin{array}{c|ccc} & \omega = 1 & \omega = 0 \\ \hline \alpha = 1 & 140 & 17 \\ \alpha = 0 & 20 & 54 \end{array}$$

Evaluation of classification models

Confusion matrix entries are often normalized with respect to the number of examples N to get proportions of the different agreements and disagreements among predicted and target values

target

Basic evaluation statistics

Basic statistics calculated from the confusion matrix:

target

Classification Accuracy = 194/231

Basic evaluation statistics

Basic statistics calculated from the confusion matrix:

target

predict

$$\omega = 1 \quad \omega = 0$$

$$\alpha = 1 \quad 140 \quad 17$$

$$\alpha = 0 \quad 20 \quad 54$$

Classification Accuracy = 194/231

Misclassificion Error = 37/231 = 1 - Accuracy

Evaluation for binary classification

Entries in the confusion matrix for binary classification have names:

target

predict

$$\omega = 1$$
 $\omega = 0$
 $\alpha = 1$ TP FP
 $\alpha = 0$ FN TN

TP: True positive (hit)

FP: False positive (false alarm)

TN: True negative (correct rejection)

FN: False negative (a miss)

Additional statistics

• Sensitivity (recall)
$$SENS = \frac{TP}{TP + FN}$$

• Specificity
$$SPEC = \frac{TN}{TN + FP}$$

• Positive predictive value (precision)

$$PPT = \frac{TP}{TP + FP}$$

• Negative predictive value

$$NPV = \frac{TN}{TN + FN}$$

Binary classification: additional statistics

• Confusion matrix

target

predict

		1	0	
et	1	140	10	PPV = 140/150
	0	20	180	NPV = 180/200
-		SENS = 140/160	SPEC = 180/190	

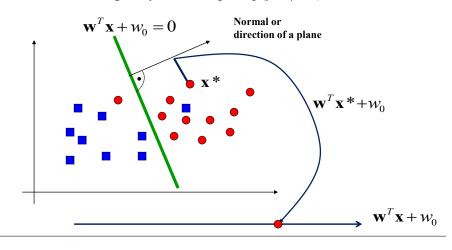
Row and column quantities:

- Sensitivity (SENS)
- Specificity (SPEC)
- Positive predictive value (PPV)
- Negative predictive value (NPV)

Binary classification models

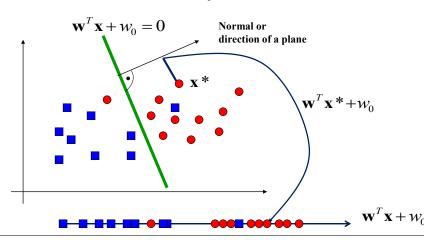
Often project data points to one dimensional space:

Defined for example by: $\mathbf{w}^{T}\mathbf{x}+\mathbf{w}_{0}$ or $\mathbf{p}(\mathbf{y}=1|\mathbf{x},\mathbf{w})$



Often project data points to one dimensional space:

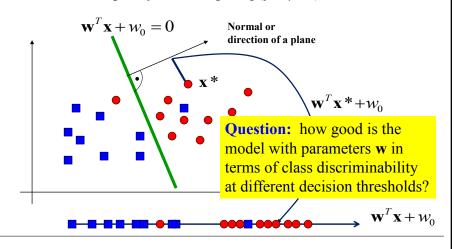
Defined for example by: $\mathbf{w}^{T}\mathbf{x}+\mathbf{w}_{0}$ or $\mathbf{p}(\mathbf{y}=1|\mathbf{x},\mathbf{w})$

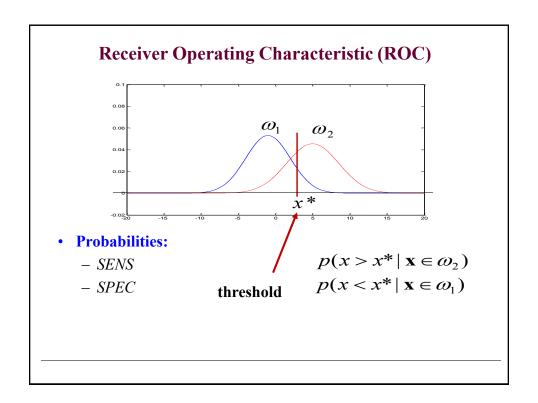


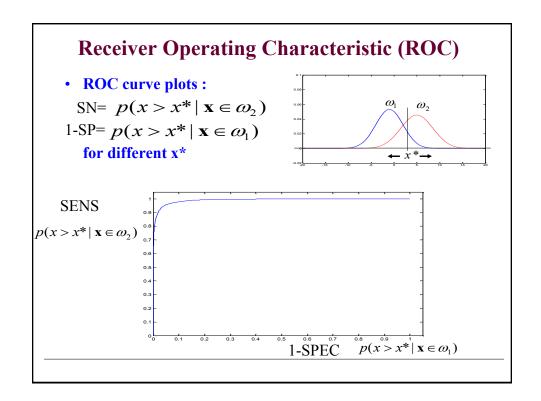
Binary classification models

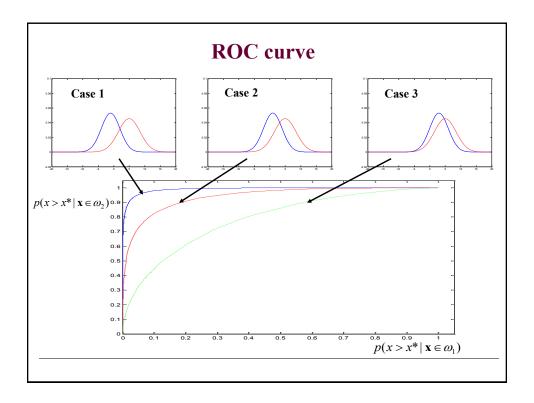
Often project data points to one dimensional space:

Defined for example by: $\mathbf{w}^T\mathbf{x}+\mathbf{w}_0$ or $p(y=1|\mathbf{x},\mathbf{w})$









Receiver operating characteristic

- ROC
 - shows the discriminability between the two classes under different thresholds representing different decision biases
- Decision bias
 - can be changed using the different loss function
- Quality of a classification model:
 - Area under the ROC
 - Best value 1, worst (no discriminability): 0.5