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Generative classification models
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5329 Sennott Square

Classification

« Data: D={d,d,,.d}
d, =<Xx,,y; >
— Yy, represents a discrete class value
« Goal: learn f: XY

» Binary classification
— Aspecial case when Y €{0,1}

 First step:
— we need to devise a model of the function f
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Discriminant functions

« A common way to represent a classifier is by using
— Discriminant functions
« Works for both the binary and multi-way classification
* ldea:
— For every class i = 0,1, ...k define a function g;(X)
mapping X — R
— When the decision on input x should be made choose the
class with the highest value of g, (x)

y*=arg max; g;(x)

Logistic regression model

« Discriminant functions:
9,(x) = g(W'x) 9o (x) =1-g(W'X)
+ Values of discriminant functions vary in interval [0,1]
— Probabilistic interpretation

f(x,w) = p(y =1 w, X) = g,(x) = g(W'x)

1 W,
Xy W, z Z f p(y=1|X,W)
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When does the logistic regression fail?

» Nonlinear decision boundary

Decision boundary

2 15 1 0.5 o 0.5 1 15

When does the logistic regression fail?

» Another example of a non-linear decision boundary




Non-linear extension of logistic regression

« use feature (basis) functions to model nonlinearities
+ the same trick as used for the linear regression

Linear regression Logistic regression
m

f(X):WO+ZWj¢j(X) p(y=l|X)=g(W0+ZWj¢j(X))

¢j (X) - an arbitrary function of x
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Regularized logistic regression

If the model is too complex and can cause overfitting, its
prediction accuracy can be improved by removing some
inputs from the model = setting their coefficients to zero

Recall the linear model:
f (X) = WyXy + WX, +W,X, + WX, +... W, X, =W' X
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X
f(X) = WX, +0X, +W,X, + WX, +... W X, =W'X




Regularized logistic regression

« If the model is too complex and can cause overfitting, its
prediction accuracy can be improved by removing some
inputs from the model = setting their coefficients to zero

* We can apply the same idea to the logistic regression:

p(y =1|x) = g(w'x) Wy, W,,...W, - parameters (weights)
(1
Q
>/< W, —> > A
< X WZ/* O
Input vector 2
X . Wy
L Xd

P(Y =1]X) = g(WpXo +0% +WoX, +WoXg +...W; X, ) = g(W'X)

Ridge (L2) penalty
Linear regression — Ridge penalty:

1
In(w) == D204 =W +HAw],

i=1,..n
Fit to data Model complexity penalty
d

||\N|||_22 - gwiz =w'w and 420

Logistic regression:
Jn(w) =—log P(D|w)

Fit to data Model complexity penalty
J,(w) = _|:z y; log g(Ww'x) + (@~ y;) log(1—g(w' %)) |+ /1||W||,_2

A,

T

i=1
Fit to data measured using the negative log likelihood




Lasso (L1) penalty

Linear regression — Lasso penalty:

1 P
J,(w) 5 o Do —WIx)E AW
i=1,..n
Fit to data Model complexity penalty
d
[wl, =2_Iw | and 4A>=0

Logistic regression:
J, (W) =—log P(D|w)+ 2w ,

Fit to data Model complexity penalty
Jn(w) = —[Z y; log g(w' %)+ (- ;) log(1-g(w'x, ))} + Aw],

i=1
Fit to data measured using the negative log likelihood

Generative approach to classification

Logistic regression:
+ Represents and learns a model of | p(y|X)
« An example of a discriminative classification approach

» Model is unable to sample (generate) data instances (X, y)
Generative approach:
« Represents and learns the joint distribution pP(X,y)
« Model is able to sample (generate) data instances (X, y)
» The joint model defines probabilistic discriminant functions

HOW? o (x) = p(y =1|x) = P& Y =D _ p(x|y=1)p(y =1)
' P(x) P(x)

g.(x) = p(y =0[x) = P&Y=0) _ pX|y=0)p(y=0)
’ P(x) P(x)

p(y=0|x)+ p(y=1|x) =1




Generative approach to classification

Typical joint model  p(x,y) = p(x|y) p(y)
« p(X]y) = Class-conditional distributions

(densities)

binary classification: two class-conditional

distributions

p(x|y=0) p(x|y=1) PXx1y)

« pP(Y) =Priorson classes

— probability of class y

— for binary classification: Bernoulli distribution

p(y=0)+p(y=1)=1

p(y)

Quadratic discriminant analysis (QDA)

Model:
« Class-conditional distributions are
— multivariate normal distributions
X~N(n,,x,) for y=0
X~N(,,x,) for y=1
Multivariate normal X~ N (p, X)
p(x| 1, T) = ;mexp[—l(x—uf El(X—u)}
(27)""?|5| 2
« Priorson classes (class 0,1) Y ~ Bernoulli

— Bernoulli distribution
p(y,0)=6"(1-0)" y {0}




Learning of parameters of the QDA model

Density estimation in statistics

» We see examples — we do not know the parameters of
Gaussians (class-conditional densities)

1 1 Tlpy
D(X|H,Z)—W3Xp[—§(><—u) X7(x H)}

« ML estimate of parameters of a multivariate normal N (p, X)
for a set of n examples of x .
Optimize log-likelihood: 1(D,p,Z)=log ] | p(x; | 1. X)
i=1
L1 o 1 N N
H:_in ZZ_Z(Xi_N)(Xi_H)T
n = L )

« How about class priors?

Learning Quadratic discriminant analysis

(QDA)

* Learning Class-conditional distributions

— Learn parameters of 2 multivariate normal
distributions

X~N(n,,x,) for y=0
X~N(,,x,) for y=1

— Use the density estimation methods

« Learning Priors on classes (class 0,1) y ~ Bernoulli
— Learn the parameter of the Bernoulli distribution
— Again use the density estimation methods

p(y,0)=6"1-0)"" y {01}
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2 Gaussian class-conditional densities

Class conditional densities




QDA: Making class decision

Basically we need to design discriminant functions

 Posterior of a class — choose the class with better posterior
probability

P(y=1[X)>p(y=0|X)  mmmp then y=1
g, (%) 9. (%) else y=0

P(X] 4, ) p(y =1)

—1|x) =
P A T a0 =) POy = )+ PO 2, E) PCY =D

 Notice it is sufficient to compare:
P(X| 4, Z,) P(Y =1) > p(X| 45, X)) P(Y =0)

QDA: Quadratic decision boundary

Contours of class-conditional densities
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QDA: Quadratic decision boundary
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Linear discriminant analysis (LDA)

« Assumes covariances are thesame X~ N(u,, %), y=0

x~N(u,x), y=1
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LDA: Linear decision boundary

Contours of class-conditional densities

LDA: linear decision boundary

Decision boundary

12



Generative classification models
Idea:
1. Represent and learn the distribution p(x, y)
2. Model is able to sample (generate) data instances (X, Y)
3. The model is used to get probabilistic discriminant
functions  g,(x)=p(y=0[x) g,(x) = p(y=1|x)
Typical model P, y) = p(X| y) p(Yy)
* p(x]y) = Class-conditional distributions (densities)

binary classification: two class-conditional distributions
p(x|y=0) p(x|y=1)
* p(y) =Priorson classes - probability of classy
binary classification: Bernoulli distribution

p(y=0)+p(y=)=1

Naive Bayes classifier

A generative classifier model with an additional simplifying
assumption:

« All input attributes are conditionally independent of each
other given the class.

 One of the basic ML classification models (often performs very
well in practice)

So we have: P(Y)
: oy
p(X, y) = p(X| y)p(y) \
pxIy)=]T px1y)
- (x|y) /p(X; |y) p(Xs 1Y)
O O
X X, X4
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Learning parameters of the model

Much simpler density estimation problems
« We need to learn:
p(x|y=0) and p(x|y=1) and p(y)

 Because of the assumption of the conditional independence we
need to learn:

for every input variable i: p(X; | y =0) and p(x; |y =1)
« Much easier if the number of input attributes is large

 Also, the model gives us a flexibility to represent input
attributes of different forms !!!

« E.g. one attribute can be modeled using the Bernoulli, the
other using Gaussian density, or a Poisson distribution

Making a class decision for the Naive Bayes

Discriminant functions

+ Posterior of a class — choose the class with better posterior
probability

p(y=1|X)> p(y=0[X) then y=1
else y=0

(H p(xi |®1,i)Jp(y=1)
p(y =11x) = — = ;
(H p(xi|®1,i])p(y=0)+( p(xi|®2,i)Jp(y:1)
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Next: two interesting questions

(1) Two models with linear decision boundaries:

— Logistic regression

— LDA model (2 Gaussians with the same covariance

matrices X~N(g,%) for y=0
X~N(,2) for y=1

» Question: Is there any relation between the two models?
(2) Two models with the same gradient:

— Linear model for regression

— Logistic regression model for classification

have the same gradient update n

wew+a) (Y- F (X)X
i=1

* Question: Why is the gradient the same?

Logistic regression and generative models

« Two models with linear decision boundaries:
— Logistic regression
— Generative model with 2 Gaussians with the same
covariance matrices  x — N(y,,x) for y=0

X~N(,2) for y=1
Question: Is there any relation between the two models?
Answer: Yes, the two models are related !!!

— When we have 2 Gaussians with the same covariance
matrix the probability of y given x has the form of a
logistic regression model !!!

p(y =1|X, po,p;, X) = g(W'X)

CS 2750 Machine Learning
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Logistic regression and generative models

« Members of the exponential family can be often more
naturally described as

0'x— A(O)}
a(e)

0 - Alocation parameter ¢ - Ascale parameter

f(X|9,<P)=h(X,<P)eXIO{

« Claim: A logistic regression is a correct model when class
conditional densities are from the same distribution in the
exponential family and have the same scale factor @

* Very powerful result !'!!

— We can represent posteriors of many distributions with
the same small logistic regression model

CS 2750 Machine Learning

The gradient puzzle ...

Linear regression Logistic regression
f(x) =wW'x f(x)=p(y=1[xw)=g(w'x)
1
WO
X W 2 f(x)

N><
Ks

Xd
Gradient uPdate: Gradient update:
wewta) (v-f(x))x  Thesame  wew+ad (y - f(x)X
= a~ > =
Online: W/ <_W‘|‘a(y_ f (X))X Online: \\/ ew+a(y_ f (X))X

CS 2750 Machine Learning
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The gradient puzzle ...

« The same simple gradient update rule derived for both the
linear and logistic regression models

» Where the magic comes from?

 Under the log-likelihood measure the function models and the
models for the output selection fit together:

— Linear model + Gaussian noise 0 Gaussian noise

y=w'x+e& &~ N(0, c?)

— Logistic + Bernoulli

Bernoulli trial

f: g(w'x) i] y

y = Bernoulli( &)
O=p(y=1|x)=gw'x) %

X4

Generalized linear models (GLIMs)

Assumptions:
 The conditional mean (expectation) is:
= fWw'x)
— Where f(.) isa response function

« Output y is characterized by an exponential family distribution
with a conditional mean

Examples:
— Linear model + Gaussian noise
y=W'x+e &~N(0,o5%)

— Logistic + Bernoulli
y ~ Bernoulli(&)
O=g(WwW'x) =

Gaussian noise

Bernoulli trial

f: (W) i y

l1+e™ X
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Generalized linear models (GLIMs)

« A canonical response functions f(.) :
— encoded in the sampling distribution

pP(x|0,9) =h(x,p)exp {9);;—(;)‘(9)}

« Leads to a simple gradient form
« Example: Bernoulli distribution

P(X| £e) = " A— )™ = exp{log( ~ jX+ Iog(l—u)}

1-p
MU 1
0 = log| —— -
g(l—,uj Ao 1e?

— Logistic function matches the Bernoulli
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