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Generative classification models 

Classification 

• Data:  

 

–        represents a discrete class value  

• Goal: learn  

 

• Binary classification 

– A special case when   

 

• First step:  

– we need to devise a model of the function f 
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Discriminant functions 

• A common way to represent a classifier is by using  

– Discriminant functions 

• Works for both the binary and multi-way classification 

• Idea:  

– For every class i = 0,1, …k  define a function 

 mapping 

– When the decision on input x should be made choose the 

class with the highest value of 
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Logistic regression model 

• Discriminant functions: 

 

• Values of discriminant functions vary in interval [0,1] 

– Probabilistic interpretation 
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When does the logistic regression fail? 

• Nonlinear decision boundary 
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Decision boundary

When does the logistic regression fail? 

• Another example of a non-linear decision boundary 
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Non-linear extension of logistic regression 
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•  use feature (basis) functions to model nonlinearities 

•   the same trick as used for the linear regression 
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Linear regression Logistic regression 

Regularized logistic regression 

• If the model is too complex and can cause overfitting, its 
prediction accuracy can be improved by removing some 
inputs from the model = setting their coefficients to zero 

• Recall the linear model:   
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Regularized logistic regression 

• If the model is too complex and can cause overfitting, its 
prediction accuracy can be improved by removing some 
inputs from the model = setting their coefficients to zero 

• We can apply the same idea to the logistic regression:   
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Ridge (L2) penalty 

Linear regression – Ridge penalty: 

 

 

 

 

 

Logistic regression:  
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Fit to data  Model complexity penalty 

Fit to data  Model complexity penalty 

Fit to data measured using the negative log likelihood 
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and 

Lasso (L1) penalty 

Linear regression – Lasso penalty: 

 

 

 

 

 

Logistic regression:  
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Fit to data  Model complexity penalty 

Fit to data measured using the negative log likelihood 

Generative approach to classification 

Logistic regression:   

• Represents and learns a model of   

• An example of a discriminative classification approach 

• Model is unable to sample (generate) data instances (x, y) 

Generative approach:  

• Represents and learns the joint distribution 

• Model is able to sample (generate) data instances (x, y) 

• The joint model defines probabilistic discriminant functions 

How?   
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Generative approach to classification 

Typical joint model 

•              = Class-conditional distributions 

(densities)  

 binary classification:  two class-conditional 

distributions 

 

•              = Priors on classes   

– probability of class y 

–  for binary classification: Bernoulli distribution 

)0|( yp x

1)1()0(  ypyp

y

x

)()|(),( ypypyp xx 

)|( yp x

)1|( yp x

)(yp

)(yp

)|( yp x

Quadratic discriminant analysis (QDA) 

Model:    

• Class-conditional distributions are  

– multivariate normal distributions 

 

 

 

 

 

 

• Priors on classes  (class 0,1) 

– Bernoulli distribution 
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Learning of parameters of the QDA model 

Density estimation in statistics 

• We see examples – we do not know the parameters of 
Gaussians (class-conditional densities) 

 

 

 

• ML estimate of parameters of a multivariate normal            
for a set of  n examples of  x  

Optimize log-likelihood: 

 

 

 

• How about class priors? 
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Learning Quadratic discriminant analysis 

(QDA) 

• Learning Class-conditional distributions  

– Learn parameters of 2 multivariate normal 

distributions 

 

 

 

– Use the density estimation methods 

 

• Learning Priors on classes  (class 0,1) 

– Learn the parameter of the Bernoulli distribution 

– Again use the density estimation methods 
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QDA 
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QDA: Making class decision 

Basically we need to design discriminant functions 

• Posterior of a class – choose the class with better posterior 

probability 

 

 

 

 

 

 

• Notice it is sufficient to compare:  
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QDA: Quadratic decision boundary 
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LDA: Linear decision boundary 
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LDA: linear decision boundary 
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Generative classification models 

Idea:  

1. Represent and learn the distribution 

2. Model is able to sample (generate) data instances (x, y) 

3. The model is used to get  probabilistic discriminant 

functions 

Typical model 

•              = Class-conditional distributions (densities)  

 binary classification:  two class-conditional distributions 

 

•              = Priors on classes  - probability of class y 

 binary classification: Bernoulli distribution 
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Naïve Bayes classifier 

A generative classifier model with an additional simplifying 

assumption:  

• All input attributes are conditionally independent of each 

other given the class. 

• One of the basic ML classification models (often performs very 

well in practice)  

So we have: 
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Learning parameters of the model 

Much simpler density estimation problems 

• We need to learn: 

    and                        and  

• Because of the assumption of the conditional independence we 

need to learn:  

 for every input variable i:                        and 

• Much easier if the number of input attributes is large  

• Also, the model gives us a flexibility to represent input 

attributes of different forms !!! 

• E.g. one attribute can be modeled using the Bernoulli, the 

other using Gaussian density, or a Poisson distribution 
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Discriminant functions 

• Posterior of a class – choose the class with better posterior 

probability 
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Next: two interesting questions 

(1) Two models with linear decision boundaries: 

– Logistic regression  

– LDA model (2 Gaussians with the same covariance 

matrices   

 

• Question: Is there any relation between the two models? 

(2) Two models with the same gradient: 

– Linear model for regression 

– Logistic regression model for classification 

      have the same gradient update 

 

• Question: Why is the gradient the same? 
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Logistic regression and generative models 

• Two models with linear decision boundaries: 

– Logistic regression  

– Generative model with 2 Gaussians with the same 

covariance matrices   

 

Question: Is there any relation between the two models? 

Answer: Yes, the two models are related !!!  

– When we have 2 Gaussians with the same covariance 

matrix the probability of y given x has the form of a 

logistic regression model !!! 
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Logistic regression and generative models 

• Members of the exponential family can be often more 

naturally described as  

 

 

 

 

• Claim: A logistic regression is a correct model when class 

conditional densities are from the same distribution in the 

exponential family and have the same scale factor 

• Very powerful result !!!!  

– We can represent posteriors of many distributions with 

the same small logistic regression model 

 







 


)(

)(
exp),()|(

φ

θxθ
φφθ,x

a

A
xhf

T

θ - A location parameter φ - A scale parameter 

φ

 

CS 2750 Machine Learning 

 

The gradient puzzle … 

Logistic regression   Linear regression 
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The gradient puzzle … 

• The same simple gradient update rule derived for both the 

linear and logistic regression models 

• Where the magic comes from?  

• Under the log-likelihood measure the function models and the 

models for the output selection fit together: 

– Linear model + Gaussian noise 

 

 

– Logistic + Bernoulli 
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Generalized linear models (GLIMs) 

Assumptions: 

• The conditional mean (expectation) is: 

 

– Where              is a response function   

• Output y is characterized by an exponential family distribution 

with a conditional mean 

Examples:  

– Linear model + Gaussian noise 

 

– Logistic + Bernoulli 
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Generalized linear models (GLIMs) 

• A canonical response functions          :  

– encoded in the sampling distribution 

 

 

 

• Leads to a simple gradient form 

• Example:  Bernoulli distribution 

 

 

 

 

 

– Logistic function matches the Bernoulli 
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