CS 2750 Machine Learning Lecture 1

Machine Learning

Milos Hauskrecht

milos@cs.pitt.edu

5329 Sennott Square, x4-8845

people.cs.pitt.edu/~milos/courses/cs2750/

Administration

Instructor:

Prof. Milos Hauskrecht

milos@cs.pitt.edu

5329 Sennott Square, x4-8845

TA:

Yanbing Xue

yax14@pitt.edu

5324 Sennott Square

Office hours: TBA

Who am I?

- Milos Hauskrecht –Professor of Computer Science
- Secondary affiliations:
 - Intelligent Systems Program (ISP),
 - Department of Biomedical Informatics (DBMI)
- Research work:
 - Machine learning, Data mining, Outlier detection,
 Probabilistic modeling, Time-series models and analysis

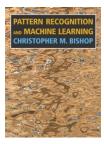
Applications to healthcare:

 EHR data analysis, Patient monitoring and alerting, Patient safety

Administration

Study material

- Handouts, your notes and course readings
- Primary textbook:



 Chris. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

Administration

Study material

- · Other books:
 - K. Murphy. Machine Learning: A probabilistic perspective, MIT Press, 2012.
 - J. Han, M. Kamber. Data Mining. Morgan Kauffman, 2011.
 - Friedman, Hastie, Tibshirani. Elements of statistical learning. Springer, 2nd edition, 2011.
 - Koller, Friedman. Probabilistic graphical models. MIT Press, 2009.
 - Duda, Hart, Stork. Pattern classification. 2nd edition. J Wiley and Sons, 2000.
 - T. Mitchell. Machine Learning. McGraw Hill, 1997.

Administration

- · Homework assignments: weekly
 - Programming tool: Matlab (free license, CSSD machines and labs)
 - Matlab Tutorial: next week
- Exams:
 - Midterm + Final
 - Midterm before Spring break
- Term project
- Lectures:
 - Attendance and Activity

Tentative topics

- Introduction
- Density estimation
- Supervised Learning
 - Linear models for regression and classification.
 - Multi-layer neural networks.
 - Support vector machines. Kernel methods.
- Unsupervised Learning
 - Learning Bayesian networks
 - Latent variable models. Expectation maximization.
 - Clustering

Tentative topics (cont)

- Ensemble methods
 - Mixture models
 - Bagging and boosting
- Dimensionality reduction
 - Feature selection
 - Principal component analysis (PCA)
- Reinforcement learning

Machine Learning

- The field of **machine learning** studies the design of computer programs (agents) capable of learning from past experience or adapting to changes in the environment
- The need for building agents capable of learning is everywhere.

Examples:

- text, web page classification
- web search
- speech recognition

Machine Learning

• Examples:

- Image/video classification, annotation and retrieval
- adaptive interfaces
- commercial software
- Game playing

Learning process

Learner (a computer program) processes data **D** representing past experiences and tries to build a **model** that either:

- Generates appropriate response to future data, or
- Describes in some meaningful way the data seen

Example:

Learner sees a set of patient cases (patient records) with corresponding diagnoses. It can either try:

- to predict the occurrence of a disease for future patients
- describe the dependencies between diseases, symptoms

Types of learning problems

- Supervised learning
 - Takes data that consists of pairs (x,y)
 - Learns mapping $f: \mathbf{x}$ (input) $\rightarrow \mathbf{y}$ (output, response)
- Unsupervised learning
 - Takes data that consist of vectors x
 - Learns relations x among vector components
 - Groups/clusters data into the groups
- Reinforcement learning
 - Learns mapping $f: x \text{ (input)} \rightarrow y \text{ (desired output)}$
 - From (x,y,r) triplets where x is an input, y is a response chosen by the user/system, and r is a reinforcement signal
 - Online: see x, choose y and observe r
- Other types of learning: Active learning, Transfer learning, Deep learning

Supervised learning

Data: $D = \{d_1, d_2, ..., d_n\}$ a set of n examples $d_i = \langle \mathbf{x}_i, y_i \rangle$

 \mathbf{x}_i is input vector, and y is desired output (given by a teacher)

Objective: learn the mapping $f: X \to Y$

s.t.
$$y_i \approx f(x_i)$$
 for all $i = 1,...,n$

Two types of problems:

• Regression: X discrete or continuous →

Y is continuous

• Classification: X discrete or continuous →

Y is discrete

Supervised learning examples

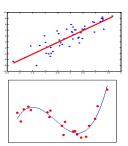
• Regression: Y is continuous

Debt/equity

Earnings

Future product orders

Stock price

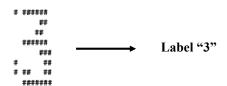


Data:

Debt/equity	Earnings	Future prod orders	Stock price
20	115	20	123.45
18	120	31	140.56

Supervised learning examples

• Classification: Y is discrete



504/9213 44604567 50271864 13591565 10375809 87409756 23949210 56793970

Handwritten digit (array of 0,1s)

Data: image digit

3

7

5

Unsupervised learning

- **Data:** $D = \{d_1, d_2, ..., d_n\}$ $d_i = \mathbf{x}_i$ vector of values No target value (output) y
- Objective:
 - learn relations between samples, components of samples

Types of problems:

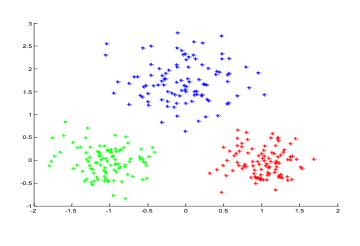
• Clustering

Group together "similar" examples, e.g. patient cases

- Density estimation
 - Model probabilistically the population of samples

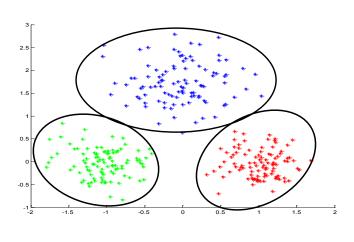
Unsupervised learning example

• Clustering. Group together similar examples $d_i = \mathbf{x}_i$



Unsupervised learning example

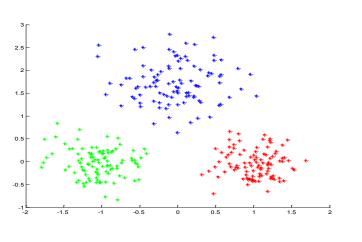
• Clustering. Group together similar examples $d_i = \mathbf{x}_i$



Unsupervised learning example Clustering. Group together similar examples

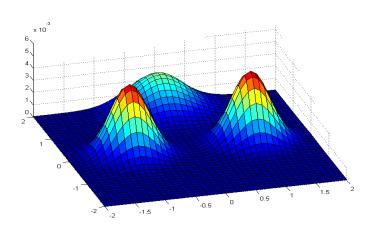
Unsupervised learning example

• **Density estimation.** We want to build a probability model $P(\mathbf{x})$ of a population from which we drew examples $d_i = \mathbf{x}_i$



Unsupervised learning. Density estimation

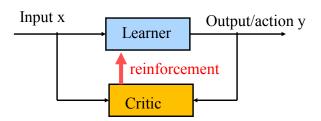
- A probability density of a point in the two dimensional space
 - Model used here: Mixture of Gaussians



Reinforcement learning

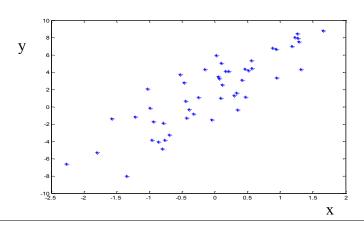
We want to learn: $f: X \to Y$

- We see examples of inputs \mathbf{x} but not y
- We select y for observed x from available choices
- We get a feedback (reinforcement) from a **critic** about how good our choice of y was

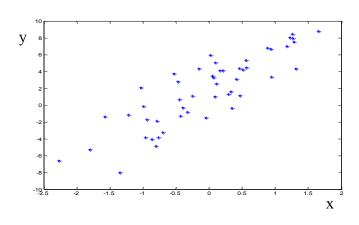


• The goal is to select outputs that lead to the best reinforcement

- Assume we see examples of pairs (\mathbf{x}, y) in D and we want to learn the mapping $f: X \to Y$ to predict y for some future \mathbf{x}
- We get the data *D* what should we do?

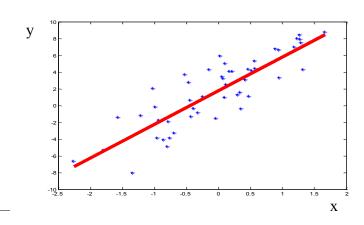


- Problem: many possible functions $f: X \to Y$ exists for representing the mapping between \mathbf{x} and \mathbf{y}
- Which one to choose? Many examples still unseen!

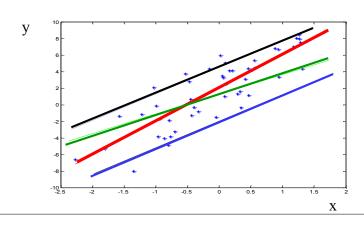


• Solution: make an assumption about the model, say,

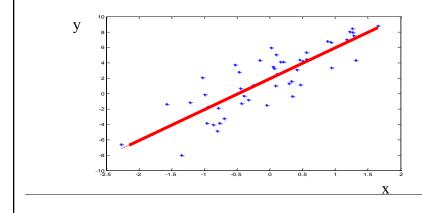
$$f(x) = ax + b$$



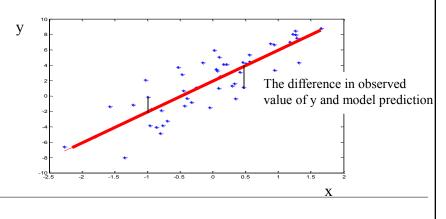
- Choosing a parametric model or a set of models is not enough Still too many functions f(x) = ax + b
 - One for every pair of parameters a, b



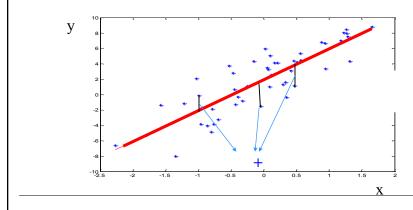
- We want the **best set** of model parameters
 - reduce the misfit between the model **M** and observed data **D**
 - Or, (in other words) explain the data the best
- How to measure the misfit?



- We want the **best set** of model parameters
 - reduce the misfit between the model **M** and observed data **D**
 - Or, (in other words) explain the data the best
- How to measure the misfit?



- We want the **best set** of model parameters
 - reduce the misfit between the model **M** and observed data **D**
 - Or, (in other words) explain the data the best
- How to measure the misfit?



Learning: first look

- We want the **best set** of model parameters
 - reduce the misfit between the model **M** and observed data **D**
 - Or, (in other words) explain the data the best
- How to measure the misfit?

Objective function:

- Error function: Measures the misfit between D and M
- Examples of error functions:
 - Average Square Error $\frac{1}{n} \sum_{i=1}^{n} (1)^{n}$

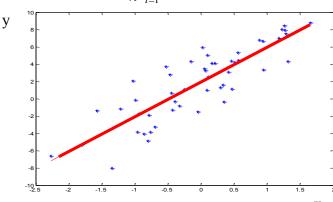
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

Average Absolute Error

$$\frac{1}{n}\sum_{i=1}^n|y_i-f(x_i)|$$

- Linear regression problem
 - Minimizes the squared error function for the linear model

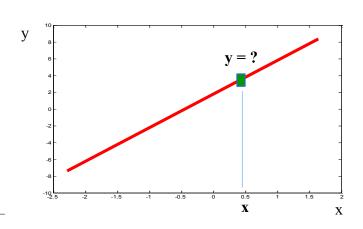
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$



Learning: first look

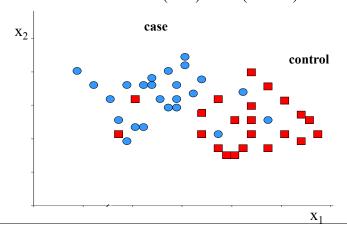
• **Application:** A new example **x** with unknown value y is checked against the model, and y is calculated

$$y = f(x) = ax + b$$



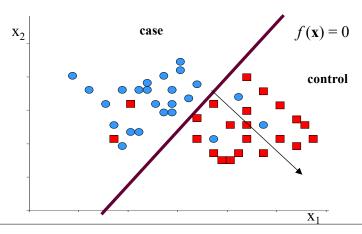
Supervised learning: Classification

Data D: pairs (x, y) where y is a class label:
 y examples: patient will be readmitted or no,
 has disease (case) or no (control)



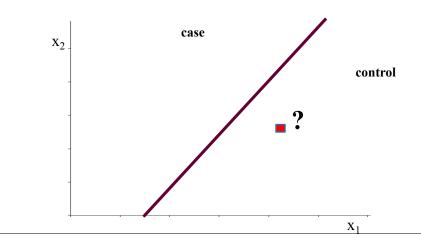
Supervised learning: Classification

- Find a model $f: X \to R$, say $f(x) = ax_1 + bx_2 + c$ that defines a decision boundary $f(\mathbf{x}) = 0$ that separates well the two classes
 - Note that some examples are not correctly classified



Supervised learning: Classification

• A new example x with unknown class label is checked against the model, the class label is assigned

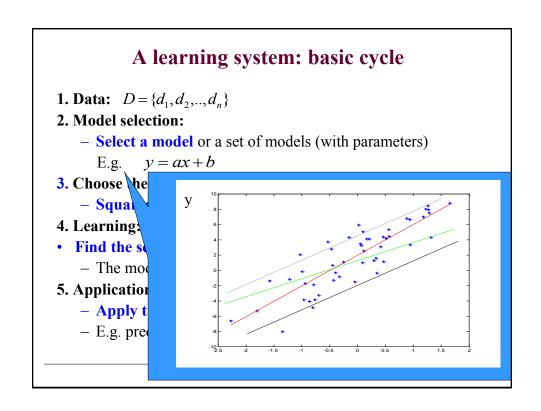


Learning: first look

- **1. Data:** $D = \{d_1, d_2, ..., d_n\}$
- 2. Model selection:
 - Select a model or a set of models (with parameters) E.g. y = ax + b
- 3. Choose the objective function
 - Squared error $\frac{1}{n} \sum_{i=1}^{n} (y_i f(x_i))^2$
- 4. Learning:
- Find the set of parameters optimizing the error function
 - The model and parameters with the smallest error
- 5. Application
 - Apply the learned model to new data
 - E.g. predict ys for new inputs x using learned $f(\mathbf{x})$

CS 2750 Machine Learning

Learning: first look 1. Data: $D = \{d_1, d_2, ..., d_n\}$ 2. Model election E.g. 3. Choose the election of the set of the model of the model of the set of the set of the model of the set o



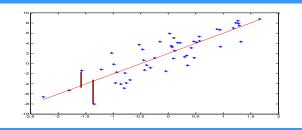
- **1. Data:** $D = \{d_1, d_2, ..., d_n\}$
- 2. Model selection:
 - Select a model or a set of models (with parameters)

E.g.
$$y = ax + b$$

- 3. Choose the objective function
 - Squared error

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

- 4. Learning:
- Find the se
 - The mod
- 5. Application
 - Apply t
 - E.g. pre



- **1. Data:** *D* =
- 2. Model selec
 - Select a
- 3. Choose the
 - Square
- 4. Learning:
- Find the set of parameters optimizing the error function
 - The model and parameters with the smallest error
- 5. Application:
 - Apply the learned model to new data
 - E.g. predict ys for new inputs \mathbf{x} using learned $f(\mathbf{x})$

- **1. Data:** $D = \{d_1, d_2, ..., d_n\}$
- 2. Model selection:
 - Select a model or a set of models (with parameters)

E.g.

- 3. Choose tl
 - Squar
- 4. Learning
- Find the
- The m 5. Applicati
- Apply the learned model to new data
- E.g. predict ys for new inputs x using learned $f(\mathbf{x})$

- **1. Data:** $D = \{d_1, d_2, ..., d_n\}$
- 2. Model selection:
 - Select a model or a set of models (with parameters) y = ax + bE.g.
- 3. Choose the objective function
 - Squared error

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

- 4. Learning:
- Find the set of parameters optimizing the error function
 - The model and parameters with the smallest error
- 5. Application
 - Apply the learned model to new data
- Looks straightforward, but there are problems