CS 2750 Machine Learning Lecture 3

Density estimation

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Outline

Outline:

- Density estimation:
- Maximum likelihood (ML)
- Bayesian parameter estimates
- MAP
- Bernoulli distribution
- Binomial distribution
- Multinomial distribution
- Normal distribution

Density estimation

Density estimation: is an unsupervised learning problem

- Goal: Learn relations among attributes in the data

Data: $D=\left\{D_{1}, D_{2}, . ., D_{n}\right\}$
$D_{i}=\mathbf{x}_{i}$ a vector of attribute values

Attributes:

- modeled by random variables $\mathbf{X}=\left\{X_{1}, X_{2}, \ldots, X_{d}\right\}$ with
- Continuous or discrete valued variables

Density estimation: learn the underlying probability
distribution: $p(\mathbf{X})=p\left(X_{1}, X_{2}, \ldots, X_{d}\right)$ from \mathbf{D}

Density estimation

Data: $\quad D=\left\{D_{1}, D_{2}, . ., D_{n}\right\}$
$D_{i}=\mathbf{x}_{i} \quad$ a vector of attribute values
Objective: estimate the underlying probability distribution over variables $\mathbf{X}, p(\mathbf{X})$, using examples in D

Standard (iid) assumptions: Samples

- are independent of each other
- come from the same (identical) distribution (fixed $p(X)$)

Density estimation

Types of density estimation:

Parametric

- the distribution is modeled using a set of parameters Θ

$$
p(\mathbf{X} \mid \Theta)
$$

- Example: mean and covariances of a multivariate normal
- Estimation: find parameters Θ describing data D

Non-parametric

- The model of the distribution utilizes all examples in D
- As if all examples were parameters of the distribution
- Examples: Nearest-neighbor

Learning via parameter estimation

In this lecture we consider parametric density estimation
Basic settings:

- A set of random variables $\mathbf{X}=\left\{X_{1}, X_{2}, \ldots, X_{d}\right\}$
- A model of the distribution over variables in \boldsymbol{X} with parameters Θ : $\hat{p}(\mathbf{X} \mid \Theta)$
- Data $D=\left\{D_{1}, D_{2}, . ., D_{n}\right\}$

Objective: find parameters Θ such that $p(\mathbf{X} \mid \Theta)$ fits data D the best

Parameter estimation

- Maximum likelihood (ML)
maximize $p(D \mid \Theta, \xi)$
- yields: one set of parameters $\Theta_{M L}$
- the target distribution is approximated as:

$$
\hat{p}(\mathbf{X})=p\left(\mathbf{X} \mid \boldsymbol{\Theta}_{M L}\right)
$$

- Bayesian parameter estimation
- uses the posterior distribution over possible parameters

$$
p(\Theta \mid D, \xi)=\frac{p(D \mid \Theta, \xi) p(\Theta \mid \xi)}{p(D \mid \xi)}
$$

- Yields: all possible settings of Θ (and their "weights")
- The target distribution is approximated as:

$$
\hat{p}(\mathbf{X})=p(\mathbf{X} \mid D)=\int_{\boldsymbol{\Theta}} p(X \mid \boldsymbol{\Theta}) p(\boldsymbol{\Theta} \mid D, \xi) d \boldsymbol{\Theta}
$$

Parameter estimation

Other possible criteria:

- Maximum a posteriori probability (MAP)
maximize $p(\boldsymbol{\Theta} \mid D, \boldsymbol{\xi}) \quad$ (mode of the posterior)
- Yields: one set of parameters $\boldsymbol{\Theta}_{\text {MAP }}$
- Approximation:

$$
\hat{p}(\mathbf{X})=p\left(\mathbf{X} \mid \boldsymbol{\Theta}_{M A P}\right)
$$

- Expected value of the parameter

$$
\hat{\boldsymbol{\Theta}}=E(\boldsymbol{\Theta}) \quad \text { (mean of the posterior) }
$$

- Expectation taken with regard to posterior $p(\boldsymbol{\Theta} \mid D, \xi)$
- Yields: one set of parameters
- Approximation:

$$
\hat{p}(\mathbf{X})=p(\mathbf{X} \mid \hat{\boldsymbol{\Theta}})
$$

Parameter estimation. Coin example.

Coin example: we have a coin that can be biased
Outcomes: two possible values -- head or tail
Data: D a sequence of outcomes x_{i} such that

- head $x_{i}=1$
- tail $x_{i}=0$

Model: probability of a head θ
probability of a tail $(1-\theta)$
Objective:
We would like to estimate the probability of a head $\hat{\theta}$ from data

Parameter estimation. Example.

- Assume the unknown and possibly biased coin
- Probability of the head is θ
- Data:

H H T T H H THTHTTTHTHHHHTHHHHT

- Heads: 15
- Tails: 10

What would be your estimate of the probability of a head ?

$$
\tilde{\theta}=\text { ? }
$$

Parameter estimation. Example

- Assume the unknown and possibly biased coin
- Probability of the head is θ
- Data:

H H T THHTHTHTTTHTHHHHTHHHHT

- Heads: 15
- Tails: 10

What would be your choice of the probability of a head ?
Solution: use frequencies of occurrences to do the estimate

$$
\tilde{\theta}=\frac{15}{25}=0.6
$$

This is the maximum likelihood estimate of the parameter θ

Probability of an outcome

Data: D a sequence of outcomes x_{i} such that

- head $\quad x_{i}=1$
- tail $\quad x_{i}=0$

Model: probability of a head θ probability of a tail $(1-\theta)$

Assume: we know the probability θ
Probability of an outcome of a coin flip x_{i}

$$
P\left(x_{i} \mid \theta\right)=\theta^{x_{i}}(1-\theta)^{\left(1-x_{i}\right)} \longleftarrow \quad \text { Bernoulli distribution }
$$

- Combines the probability of a head and a tail
- So that x_{i} is going to pick its correct probability
- Gives θ for $x_{i}=1$
- Gives (1- θ) for $x_{i}=0$

Probability of a sequence of outcomes.

Data: D a sequence of outcomes x_{i} such that

- head $\quad x_{i}=1$
- tail $\quad x_{i}=0$

Model: probability of a head θ probability of a tail $(1-\theta)$
Assume: a sequence of independent coin flips $D=$ H H T H T H \quad (encoded as $D=110101$)
What is the probability of observing the data sequence \mathbf{D} :

$$
P(D \mid \theta)=?
$$

Probability of a sequence of outcomes.

Data: D a sequence of outcomes x_{i} such that

- head $\quad x_{i}=1$
- tail $\quad x_{i}=0$

Model: probability of a head θ probability of a tail $(1-\theta)$
Assume: a sequence of coin flips $D=$ H H T H T H encoded as $\mathbf{D}=110101$
What is the probability of observing a data sequence \mathbf{D} :

$$
P(D \mid \theta)=\theta \theta(1-\theta) \theta(1-\theta) \theta
$$

Probability of a sequence of outcomes.

Data: D a sequence of outcomes x_{i} such that

- head $x_{i}=1$
- tail $x_{i}=0$

Model: probability of a head θ probability of a tail $(1-\theta)$
Assume: a sequence of coin flips $D=$ H H T H T H encoded as $\mathbf{D}=\mathbf{1 1 0 1 0 1}$
What is the probability of observing a data sequence \mathbf{D} :
$P(D \mid \theta)=\theta \theta(1-\theta) \theta(1-\theta) \theta$
likelihood of the data

Probability of a sequence of outcomes.

Data: D a sequence of outcomes x_{i} such that

- head $\quad x_{i}=1$
- tail $\quad x_{i}=0$

Model: probability of a head θ probability of a tail $(1-\theta)$
Assume: a sequence of coin flips $D=$ H H T H T H encoded as $\mathbf{D}=110101$
What is the probability of observing a data sequence \mathbf{D} :

$$
\begin{aligned}
& P(D \mid \theta)=\theta \theta(1-\theta) \theta(1-\theta) \theta \\
& P(D \mid \theta)=\prod_{i=1}^{6} \theta^{x_{i}}(1-\theta)^{\left(1-x_{i}\right)}
\end{aligned}
$$

Can be rewritten using the Bernoulli distribution:

The goodness of fit to the data

Learning: we do not know the value of the parameter θ
Our learning goal:

- Find the parameter θ that fits the data D the best?

One solution to the "best": Maximize the likelihood

$$
P(D \mid \theta)=\prod_{i=1}^{n} \theta^{x_{i}}(1-\theta)^{\left(1-x_{i}\right)}
$$

Intuition:

- more likely are the data given the model, the better is the fit

Note: Instead of an error function that measures how bad the data fit the model we have a measure that tells us how well the data fit :

$$
\operatorname{Error}(D, \theta)=-P(D \mid \theta)
$$

Maximum likelihood (ML) estimate.

Likelihood of data:

$$
P(D \mid \theta, \xi)=\prod_{i=1}^{n} \theta^{x_{i}}(1-\theta)^{\left(1-x_{i}\right)}
$$

Maximum likelihood estimate

$$
\theta_{M L}=\underset{\theta}{\arg \max } P(D \mid \theta, \xi)
$$

Optimize log-likelihood (the same as maximizing likelihood)
$l(D, \theta)=\log P(D \mid \theta, \xi)=\log \prod_{i=1}^{n} \theta^{x_{i}}(1-\theta)^{\left(1-x_{i}\right)}=$
$\sum_{i=1}^{n} x_{i} \log \theta+\left(1-x_{i}\right) \log (1-\theta)=\log \theta \sum_{i=1}^{n} x_{i}+\log (1-\theta) \sum_{i=1}^{n}\left(1-x_{i}\right)$
N_{1} - number of heads seen $\quad N_{2}$ - number of tails seen

Maximum likelihood (ML) estimate.

Optimize log-likelihood

$$
l(D, \theta)=N_{1} \log \theta+N_{2} \log (1-\theta)
$$

Set derivative to zero

$$
\frac{\partial l(D, \theta)}{\partial \theta}=\frac{N_{1}}{\theta}-\frac{N_{2}}{(1-\theta)}=0
$$

Solving

$$
\theta=\frac{N_{1}}{N_{1}+N_{2}}
$$

$$
\text { ML Solution: } \quad \theta_{M L}=\frac{N_{1}}{N}=\frac{N_{1}}{N_{1}+N_{2}}
$$

$$
\text { CS } 2750 \text { Machine Learning }
$$

Maximum likelihood estimate. Example

- Assume the unknown and possibly biased coin
- Probability of the head is θ
- Data:

H H T THHTHTHTTTHTHHHHTHHHHT

- Heads: 15
- Tails: 10

What is the ML estimate of the probability of a head and a tail?

Maximum likelihood estimate. Example

- Assume the unknown and possibly biased coin
- Probability of the head is θ
- Data:

HHTTHHTHTHTTTHTHHHHTHHHHT

- Heads: 15
- Tails: 10

What is the ML estimate of the probability of head and tail ?

Head: $\quad \theta_{M L}=\frac{N_{1}}{N}=\frac{N_{1}}{N_{1}+N_{2}}=\frac{15}{25}=0.6$
Tail: $\quad\left(1-\theta_{M L}\right)=\frac{N_{2}}{N}=\frac{N_{2}}{N_{1}+N_{2}}=\frac{10}{25}=0.4$

Maximum a posteriori estimate

Maximum a posteriori estimate

- Selects the mode of the posterior distribution

$$
\theta_{M A P}=\underset{\theta}{\arg \max } p(\theta \mid D, \xi)
$$

$$
\begin{aligned}
& \text { Likelihood of data } \\
& \qquad p(\theta \mid D, \xi)=\frac{P(D \mid \theta, \xi) p(\theta \mid \xi)}{P(D \mid \xi)} \text { (via Bayes rule) } \\
& P(D \mid \theta, \xi)=\prod_{i=1}^{n} \theta^{x_{i}}(1-\theta)^{\left(1-x_{i}\right)}=\theta^{N_{1}}(1-\theta)^{N_{2}}
\end{aligned}
$$

$p(\theta \mid \xi) \quad$ - is the prior probability on θ
How to choose the prior probability?

Prior distribution

Choice of prior: Beta distribution

$$
p(\theta \mid \xi)=\operatorname{Beta}\left(\theta \mid \alpha_{1}, \alpha_{2}\right)=\frac{\Gamma\left(\alpha_{1}+\alpha_{2}\right)}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right)} \theta^{\alpha_{1}-1}(1-\theta)^{\alpha_{2}-1}
$$

$\Gamma(x)$ - a Gamma function $\Gamma(x)=(x-1) \Gamma(x-1)$
For integer values of $\mathrm{x} \quad \Gamma(n)=(n-1)$!

Why to use Beta distribution?

Beta distribution "fits" Bernoulli trials - conjugate choices

$$
P(D \mid \theta, \xi)=\theta^{N_{1}}(1-\theta)^{N_{2}}
$$

Posterior distribution is again a Beta distribution

$$
p(\theta \mid D, \xi)=\frac{P(D \mid \theta, \xi) \operatorname{Beta}\left(\theta \mid \alpha_{1}, \alpha_{2}\right)}{P(D \mid \xi)}=\operatorname{Beta}\left(\theta \mid \alpha_{1}+N_{1}, \alpha_{2}+N_{2}\right)
$$

Beta distribution

Posterior distribution

Maximum a posterior probability

Maximum a posteriori estimate

- Selects the mode of the posterior distribution

$$
p(\theta \mid D, \xi)=\frac{P(D \mid \theta, \xi) \operatorname{Beta}\left(\theta \mid \alpha_{1}, \alpha_{2}\right)}{P(D \mid \xi)}=\operatorname{Beta}\left(\theta \mid \alpha_{1}+N_{1}, \alpha_{2}+N_{2}\right)
$$

$$
=\frac{\Gamma\left(\alpha_{1}+\alpha_{2}+N_{1}+N_{2}\right)}{\Gamma\left(\alpha_{1}+N_{1}\right) \Gamma\left(\alpha_{2}+N_{2}\right)} \theta^{N_{1}+\alpha_{1}-1}(1-\theta)^{N_{2}+\alpha_{2}-1}
$$

Notice that parameters of the prior
act like counts of heads and tails

(sometimes they are also referred to as prior counts)
MAP Solution: $\quad \theta_{M A P}=\frac{\alpha_{1}+N_{1}-1}{\alpha_{1}+\alpha_{2}+N_{1}+N_{2}-2}$

MAP estimate example

- Assume the unknown and possibly biased coin
- Probability of the head is θ
- Data:

H H T THHTHTHTTTHTHHHHTHHHHT

- Heads: 15
- Tails: 10
- Assume $p(\theta \mid \xi)=\operatorname{Beta}(\theta \mid 5,5)$

What is the MAP estimate?

MAP estimate example

- Assume the unknown and possibly biased coin
- Probability of the head is θ
- Data:

H H T T H H THTHTTTHTHHHHTHHHHT

- Heads: 15
- Tails: 10
- Assume $p(\theta \mid \xi)=\operatorname{Beta}(\theta \mid 5,5)$

What is the MAP estimate ?

$$
\theta_{M A P}=\frac{N_{1}+\alpha_{1}-1}{N-2}=\frac{N_{1}+\alpha_{1}-1}{N_{1}+N_{2}+\alpha_{1}+\alpha_{2}-2}=\frac{19}{33}
$$

MAP estimate example

- Note that the prior and data fit (data likelihood) are combined
- The MAP can be biased with large prior counts
- It is hard to overturn it with a smaller sample size
- Data:

H H T THHTHTHTTTHTHHHHTHHHHT

- Heads: 15
- Tails: 10
- Assume

$$
\begin{array}{ll}
p(\theta \mid \xi)=\operatorname{Beta}(\theta \mid 5,5) & \theta_{M A P}=\frac{19}{33} \\
p(\theta \mid \xi)=\operatorname{Beta}(\theta \mid 5,20) & \theta_{M A P}=\frac{19}{48}
\end{array}
$$

Bayesian framework

Both ML or MAP estimates pick one value of the parameter

- Assume: there are two different parameter settings that are close in terms of their probability values. Using only one of them may introduce a strong bias, if we use them, for example, for predictions.
Bayesian parameter estimate
- Remedies the limitation of one choice
- Keeps all possible parameter values
- Where $p(\theta \mid D, \xi) \approx \operatorname{Beta}\left(\theta \mid \alpha_{1}+N_{1}, \alpha_{2}+N_{2}\right)$
- The posterior can be used to define $p(A \mid D)$:

$$
p(A \mid D)=\int_{\boldsymbol{\Theta}} p(A \mid \boldsymbol{\Theta}) p(\boldsymbol{\Theta} \mid D, \xi) d \boldsymbol{\Theta}
$$

Bayesian framework

- Predictive probability of an outcome $x=1$ in the next trial $P(x=1 \mid D, \xi)$

$$
\begin{aligned}
P(x=1 \mid D, \xi) & =\int_{0}^{1} P(x=1 \mid \theta, \xi) \overbrace{p(\theta \mid D, \xi)}^{\text {Posterior density }} d \theta \\
& =\int_{0}^{1} \theta p(\theta \mid D, \xi) d \theta=E(\theta)
\end{aligned}
$$

- Equivalent to the expected value of the parameter
- expectation is taken with respect to the posterior distribution

$$
p(\theta \mid D, \xi)=\operatorname{Beta}\left(\theta \mid \alpha_{1}+N_{1}, \alpha_{2}+N_{2}\right)
$$

Expected value of the parameter

How to obtain the expected value?

$$
\begin{aligned}
E(\theta) & =\int_{0}^{1} \theta \operatorname{Beta}\left(\theta \mid \eta_{1}, \eta_{2}\right) d \theta=\int_{0}^{1} \theta \frac{\Gamma\left(\eta_{1}+\eta_{2}\right)}{\Gamma\left(\eta_{1}\right) \Gamma\left(\eta_{2}\right)} \theta^{\eta_{1}-1}(1-\theta)^{\eta_{2}-1} d \theta \\
& =\frac{\Gamma\left(\eta_{1}+\eta_{2}\right)}{\Gamma\left(\eta_{1}\right) \Gamma\left(\eta_{2}\right)} \int_{0}^{1} \theta^{\eta_{1}}(1-\theta)^{\eta_{2}-1} d \theta \\
& =\frac{\Gamma\left(\eta_{1}+\eta_{2}\right)}{\Gamma\left(\eta_{1}\right) \Gamma\left(\eta_{2}\right)} \frac{\Gamma\left(\eta_{1}+1\right) \Gamma\left(\eta_{2}\right)}{\Gamma\left(\eta_{1}+\eta_{2}+1\right)} \underbrace{1}_{1} \operatorname{Beta}\left(\eta_{1}+1, \eta_{2}\right) d \theta \\
& =\frac{\eta_{1}}{\eta_{1}+\eta_{2}}
\end{aligned}
$$

Note: $\quad \Gamma(\alpha+1)=\alpha \Gamma(\alpha) \quad$ for integer values of $\quad \alpha$

Expected value of the parameter

- Substituting the results for the posterior:

$$
p(\theta \mid D, \xi)=\operatorname{Beta}\left(\theta \mid \alpha_{1}+N_{1}, \alpha_{2}+N_{2}\right)
$$

- We get $E(\theta)=\frac{\alpha_{1}+N_{1}}{\alpha_{1}+N_{1}+\alpha_{2}+N_{2}}$
- Note that the mean of the posterior is yet another "reasonable" parameter choice:

$$
\hat{\theta}=E(\theta)
$$

