CS 2750 Machine Learning

 Lecture 21
Dimensionality reduction Feature selection

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Dimensionality reduction

- Is there a lower dimensional representation of the data that captures well its characteristics?
- Assume:
- We have an data $\left\{\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}, \ldots, \mathbf{x}_{\mathrm{N}}\right\}$ such that

$$
\mathbf{x}_{i}=\left(x_{i}^{1}, x_{i}^{2}, . ., x_{i}^{d}\right)
$$

- Assume the dimension d of the data point \boldsymbol{x} is very large
- We want to analyze \boldsymbol{x}
- Methods of analysis are sensitive to the dimensionality \boldsymbol{d}
- Our goal:
- Find a lower dimensional representation of data of dimension $d^{\prime}<d$

Principal component analysis (PCA)

- Objective: We want to replace a high dimensional input with a small set of features (obtained by combining inputs)
- Different from the feature subset selection !!!
- PCA:
- A linear transformation of d dimensional input x to M dimensional feature vector z such that $M<d$ under which the retained variance is maximal.
- Equivalently it is the linear projection for which the sum of squares reconstruction cost is minimized.

PCA

PCA

CS 2750 Machine Learning

Principal component analysis (PCA)

- PCA:
- linear transformation of a d dimensional input \mathbf{x} to M dimensional vector \mathbf{z} such that $M<d$ under which the retained variance is maximal.
- Task independent
- Fact:
- A vector \mathbf{x} can be represented using a set of orthonormal vectors \mathbf{u}

$$
\mathbf{x}=\sum_{i=1}^{d} z_{i} \mathbf{u}_{i}
$$

- Leads to transformation of coordinates (from \mathbf{x} to \mathbf{z} using u's)

$$
z_{i}=\mathbf{u}_{i}^{T} \mathbf{x}
$$

PCA

- Idea: replace d coordinates with M of z_{i} coordinates to represent x. We want to find the subset M of basis vectors.

$$
\widetilde{\mathbf{x}}=\sum_{i=1}^{M} z_{i} \mathbf{u}_{i}+\sum_{i=M+1}^{d} b_{i} \mathbf{u}_{i}
$$

b_{i} - constant and fixed

- How to choose the best set of basis vectors?
- We want the subset that gives the best approximation of data x in the dataset on average (we use least squares fit)
Error for data entry $\mathbf{x}^{n} \quad \mathbf{x}^{n}-\widetilde{\mathbf{x}}^{n}=\sum_{i=M+1}^{d}\left(z_{i}^{n}-b_{i}\right) \mathbf{u}_{i}$
Reconstruction error

$$
E_{M}=\frac{1}{2} \sum_{n=1}^{N}\left\|\mathbf{x}^{n}-\widetilde{\mathbf{x}}^{n}\right\|=\frac{1}{2} \sum_{n=1}^{N} \sum_{i=M+1}^{d}\left(z_{i}^{n}-b_{i}\right)^{2}
$$

PCA

- Differentiate the error function with regard to all b_{i} and set equal to 0 we get:

$$
b_{i}=\frac{1}{N} \sum_{n=1}^{N} z_{i}^{n}=\mathbf{u}_{i}{ }^{T} \overline{\mathbf{x}} \quad \overline{\mathbf{x}}=\frac{1}{N} \sum_{n=1}^{N} \mathbf{x}^{n}
$$

- Then we can rewrite:

$$
E_{M}=\frac{1}{2} \sum_{i=M+1}^{d} \mathbf{u}_{i}{ }^{T} \boldsymbol{\Sigma} \mathbf{u}_{i} \quad \mathbf{\Sigma}=\sum_{n=1}^{N}\left(\mathbf{x}^{n}-\overline{\mathbf{x}}\right)\left(\mathbf{x}^{n}-\overline{\mathbf{x}}\right)^{T}
$$

- The error function is optimized when basis vectors satisfy:

$$
\boldsymbol{\Sigma} \mathbf{u}_{i}=\lambda_{i} \mathbf{u}_{i}
$$

$$
E_{M}=\frac{1}{2} \sum_{i=M+1}^{d} \lambda_{i}
$$

The best \boldsymbol{M} basis vectors: discard vectors with $d-M$ smallest eigenvalues (or keep vectors with M largest eigenvalues)
Eigenvector $\mathbf{u}_{i}-$ is called a principal component

PCA

- Once eigenvectors \mathbf{u}_{i} with largest eigenvalues are identified, they are used to transform the original d-dimensional data to M dimensions

- To find the "true" dimensionality of the data d ' we can just look at eigenvalues that contribute the most (small eigenvalues are disregarded)
- Problem: PCA is a linear method. The "true" dimensionality can be overestimated. There can be non-linear correlations.
- Modifications for nonlinearities: kernel PCA

Dimensionality reduction with neural nets

- PCA is limited to linear dimensionality reduction
- To do non-linear reductions we can use neural nets
- Auto-associative (or auto-encoder) network: a neural network with the same inputs and outputs (\boldsymbol{x})

- The middle layer corresponds to the reduced dimensions

Dimensionality reduction with neural nets

- Error criterion:

$$
E=\frac{1}{2} \sum_{n=1}^{N} \sum_{i=1}^{d}\left(y_{i}\left(x^{n}\right)-x^{n}\right)^{2}
$$

- Error measure tries to recover the original data through limited number of dimensions in the middle layer
- Non-linearities modeled through intermediate layers between the middle layer and input/output
- If no intermediate layers are used the model replicates PCA optimization through learning

Multidimensional scaling

- Find a lower dimensional space projection such that the distances among data points are preserved
- Used in visualization - d-diminensional data transformed to 3D or 2D
- Dissimilarities before projection $\delta_{i, j}=\left\|x_{i}-x_{j}\right\|$
- Objective: Optimize points and their coordinates by fitting the dissimilarities afterwards

$$
\min _{\left\{x_{1}, x_{2}, \cdots x_{n}\right\}} \sum_{i<j}\left(\left\|x_{i}{ }^{\prime}-x_{j}{ }^{\prime}\right\|-\delta_{i j}\right)^{2}
$$

Latent variable models

Latent variables (s): Dimensionality k

Observed variables x : real valued vars Dimensionality d

Cooperative vector quantizer

Model:

Latent var s_{i} :
~ Bernoulli distribution parameter: π_{i}

$$
P\left(s_{i} \mid \pi_{i}\right)=\pi_{i}^{s_{i}}\left(1-\pi_{i}\right)^{1-s_{i}}
$$

Observable variables x :

~ Normal distribution parameters: W, $\mathbf{\Sigma}$ $P(\mathbf{x} \mid \mathbf{s})=N(\mathbf{W s}, \Sigma)$
We assume $\Sigma=\sigma$

$$
\mathbf{W}=\left(\begin{array}{cccc}
w_{11} & w_{12} & . . & w_{1 k} \\
w_{21} & & & \\
& . . & & \\
w_{d 1} & . . & . . & w_{d k}
\end{array}\right)
$$

Joint for one instance of x and s :
$P(\mathbf{x}, \mathbf{s} \mid \Theta)=(2 \pi)^{-d / 2} \sigma^{-d / 2} \exp \left\{-\frac{1}{2 \sigma^{2}}(\mathbf{x}-\mathbf{W s})^{T}(\mathbf{x}-\mathbf{W s})\right\} \prod_{i=1}^{k} \pi_{i}^{s_{i}}\left(1-\pi_{i}\right)^{\left(1-s_{i}\right)}$

Other unsupervised methods

- Factor analysis (a latent variable model)
- Decompose signal into multiple Gaussian sources

$$
\begin{aligned}
& \mathbf{x}=\mathbf{A s} \quad \mathrm{X} \text { is a linear combination of values for sources } \\
& \mathbf{s}=\mathbf{W} \mathbf{x}=\mathbf{A}^{-\mathbf{1}} \mathbf{x}
\end{aligned}
$$

- Independent component analysis:
- Identify independent components/signals/sources in the original data
- Non-Gaussian signals

$$
\mathbf{x}=\mathbf{A s}
$$

