

Dimensionality reduction for classification

- Classification problem example:
 - We have an input data $\{x_1, x_2, ..., x_N\}$ such that

$$\mathbf{x}_i = (x_i^1, x_i^2, \dots, x_i^d)$$

- and a set of corresponding output labels $\{y_1, y_2, ..., y_N\}$
- Assume the dimension d of the data point x is very large
- We want to classify x
- Problems with high dimensional input vectors
 - A large number of parameters to learn, if a dataset is small this can result in:
 - · Large variance of estimates and overfit
 - it becomes hard to explain what features are important in the model (too many choices some can be substitutable)

Feature selection

How to find a good subset of inputs/features?

- We need:
 - A criterion for ranking good inputs/features
 - Search procedure for finding a good set of features
- Feature selection process can be:
 - Dependent on the learning task
 - e.g. classification
 - Selection of features affected by what we want to predict
 - Independent of the learning task
 - Unsupervised methods
 - may lack the accuracy for classification/regression tasks

Task-dependent feature selection	
Assume:	
Classification	on problem:
$-\mathbf{x}$ – input	vector, y - output
Objective: Fin most of the c	ad a subset of inputs/features that gives/preserves putput prediction capabilities
Selection appr	oaches:
• Filtering ap	proaches
 Filter out 	features with small predictive potential
– done befo	ore classification; typically uses univariate analysis
• Wrapper ap	oproaches
 Select fea multivari 	atures that directly optimize the accuracy of the ate classifier
Embedded	methods
– Feature s	election and learning closely tied in the method
	CS 2750 Machine Learning

Feature selection through filtering

Assume:

- Classification problem: x input vector, y output
- Inputs in x or some fixed feature mappings $\phi_k(\mathbf{x})$

• How to select the feature:

- Univariate analysis
 - Pretend that only one variable, x_k , exists
 - See how well it predicts the output *y* alone
- Example:
 - differentially expressed features (or inputs)
 - Good separation in binary (case/control settings)

Feature selection: wrappers

Wrapper approach:

• The feature selection is driven by the prediction accuracy of the classifier (regressor) we actually want to built

How to find the appropriate feature set?

- For d binary features there are 2^d different feature subsets
- Idea: Greedy search in the space of classifiers
 - Gradually add features improving most the quality score
 - Gradually remove features that effect the accuracy the least
 - Score should reflect the accuracy of the classifier (error) and also prevent overfit
- Standard way to measure the quality:
 - Internal cross-validation (m-fold cross validation)

CS 2750 Machine Learning

Principal component analysis (PCA)

• PCA:

- linear transformation of a *d* dimensional input **x** to M dimensional vector **z** such that M < d under which the retained variance is maximal.

- Task independent
- Fact:

- A vector **x** can be represented using a set of orthonormal vectors **u** $\mathbf{x} = \sum_{n=1}^{d} \mathbf{z}_{n}$

$$\mathbf{x} = \sum_{i=1}^{n} z_i \mathbf{u}_i$$

Leads to transformation of coordinates (from x to z using u's)

 $z_i = \mathbf{u}_i^T \mathbf{x}$

CS 2750 Machine Learning

PCA

• Idea: replace *d* coordinates with *M* of *z_i* coordinates to represent *x*. We want to find the subset *M* of basis vectors.

$$\widetilde{\mathbf{x}} = \sum_{i=1}^{M} z_i \mathbf{u}_i + \sum_{i=M+1}^{d} b_i \mathbf{u}_i$$

 b_i - constant and fixed

• How to choose the best set of basis vectors?

 We want the subset that gives the best approximation of data *x* in the dataset on average (we use least squares fit)

Error for data entry \mathbf{x}^n $\mathbf{x}^n - \mathbf{\widetilde{x}}^n = \sum_{i=M+1}^d (z_i^n - b_i) \mathbf{u}_i$ Reconstruction error $E_M = \frac{1}{2} \sum_{n=1}^N \|\mathbf{x}^n - \mathbf{\widetilde{x}}^n\| = \frac{1}{2} \sum_{n=1}^N \sum_{i=M+1}^d (z_i^n - b_i)^2$ CS 2750 Machine Learning

