CS 2750 Machine Learning Lecture 2

Machine Learning

Milos Hauskrecht

milos@cs.pitt.edu 5329 Sennott Square, x4-8845

http://www.cs.pitt.edu/~milos/courses/cs2750/

CS 2750 Machine Learning

Types of learning

- Supervised learning
 - Learning mapping between input **x** and desired output **y**
 - Teacher gives me y's for the learning purposes
- Unsupervised learning
 - Learning relations between data components
 - No specific outputs given by a teacher
- Reinforcement learning
 - Learning mapping between input x and desired output y
 - Critic does not give me y's but instead a signal (reinforcement) of how good my answer was
- Other types of learning:
 - Concept learning, explanation-based learning, etc.

A learning system: basics

- **1. Data:** $D = \{d_1, d_2, ..., d_n\}$
- 2. Model selection:
 - Select a model or a set of models (with parameters) E.g. y = ax + b
- 3. Choose the objective function
 - Squared error

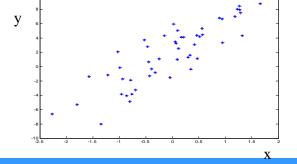
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

- 4. Learning:
- Find the set of parameters optimizing the error function
 - The model and parameters with the smallest error
- 5. Testing:
 - Apply the learned model to new data
 - E.g. predict ys for new inputs \mathbf{x} using learned $f(\mathbf{x})$
 - Evaluate on the test data

CS 2750 Machine Learning

A learning system: basics

- **1. Data:** $D = \{d_1, d_2, ..., d_n\}$
- 2. Model election
 - Selec
 - E.g.
- 3. Choose the
 - Squared e
- 4. Learning:
- Find the set of
 - The model
- 5. Testing:
 - Apply the



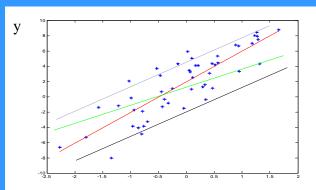
- E.g. predict ys for new inputs \mathbf{x} using learned $f(\mathbf{x})$
- Evaluate on the test data

A learning system: basics

- **1. Data:** $D = \{d_1, d_2, ..., d_n\}$
- 2. Model selection:
 - Select a model or a set of models (with parameters)

E.g.
$$y = ax + b$$

- 3. Choose he
 - Squar
- 4. Learning
- Find the s
 - The mod
- 5. Testing:
 - Apply t
 - E.g. pred
 - Evaluate



A learning system: basics

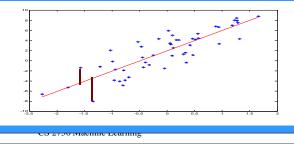
- **1. Data:** $D = \{d_1, d_2, ..., d_n\}$
- 2. Model selection:
 - Select a model or a set of models (with parameters)

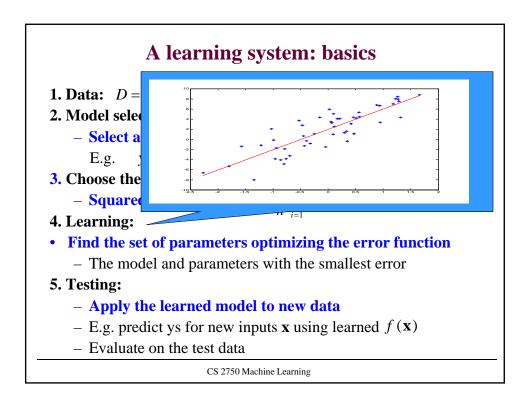
E.g.
$$y = ax + b$$

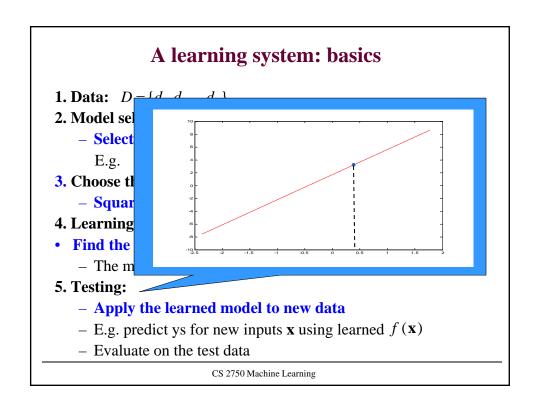
- 3. Choose the objective function
 - Squared error

$$\frac{1}{n}\sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2}$$

- 4. Learning:
- Find the se
 - The mod
- 5. Testing:
 - Apply t
 - E.g. pre
 - Evaluate

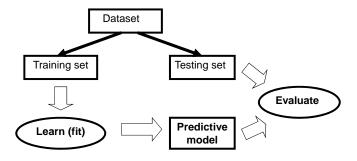




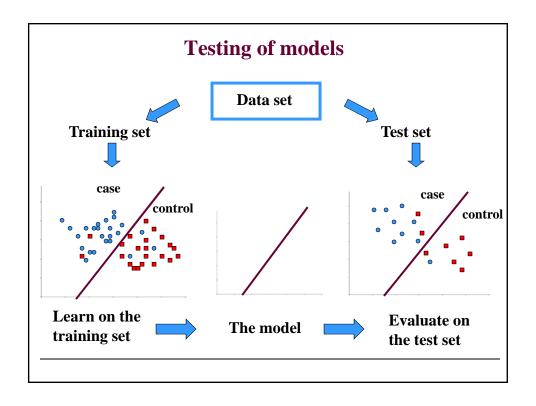


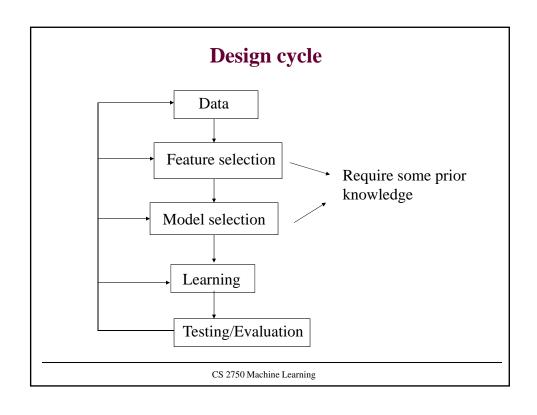
Testing of learning models

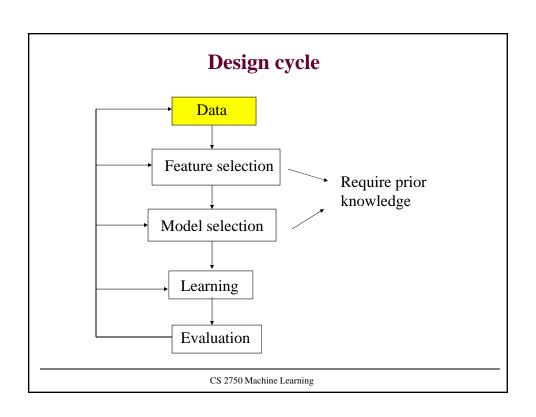
- Simple holdout method
 - Divide the data to the training and test data



- Typically 2/3 training and 1/3 testing







Data

Data may need a lot of:

- Cleaning
- Preprocessing (conversions)

Cleaning:

- Get rid of errors, noise,
- Removal of redundancies

Preprocessing:

- Renaming
- Rescaling (normalization)
- Discretization
- Abstraction
- Aggregation
- New attributes

CS 2750 Machine Learning

Data preprocessing

- Renaming (relabeling) categorical values to numbers
 - dangerous in conjunction with some learning methods
 - numbers will impose an order that is not warranted

$$\begin{array}{c} \text{High} \rightarrow 2 \\ \text{Normal} \rightarrow 1 \end{array} \bigvee \begin{array}{c} \text{True} \rightarrow 2 \\ \text{False} \rightarrow 1 \\ \text{Low} \rightarrow 0 \end{array} \qquad \begin{array}{c} \text{Red} \rightarrow 2 \\ \text{Blue} \rightarrow 1 \\ \text{Green} \rightarrow 0 \end{array}$$

- **Rescaling (normalization):** continuous values transformed to some range, typically [-1, 1] or [0,1].
- **Discretizations (binning):** continuous values to a finite set of discrete values

Data preprocessing

- Abstraction: merge together categorical values
- **Aggregation:** summary or aggregation operations, such minimum value, maximum value, average etc.
- New attributes:
 - example: obesity-factor = weight/height

CS 2750 Machine Learning

Data biases

- Watch out for data biases:
 - Try to understand the data source
 - Make sure the data we make conclusions on are the same as data we used in the analysis
 - It is very easy to derive "unexpected" results when data used for analysis and learning are biased (pre-selected)
- Results (conclusions) derived for a biased dataset do not hold in general !!!

Data biases

Example 1: Risks in pregnancy study

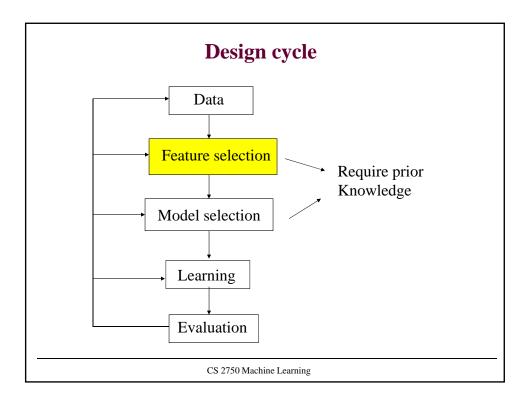
- Sponsored by DARPA at military hospitals
- Study of a large sample of pregnant woman who visited military hospitals
- Conclusion: the factor with the largest impact on reducing risks during pregnancy (statistically significant) is a pregnant woman being single
- a woman that is single \rightarrow the smallest risk
- What is wrong?

CS 2750 Machine Learning

Data

Example 2: Stock market trading (example by Andrew Lo)

- Data on stock performances of companies traded on stock market over past 25 year
- **Investment goal:** pick a stock to hold long term
- Proposed strategy: invest in a company stock with an IPO corresponding to a Carmichael number
- Evaluation result: excellent return over 25 years
- Where the magic comes from?

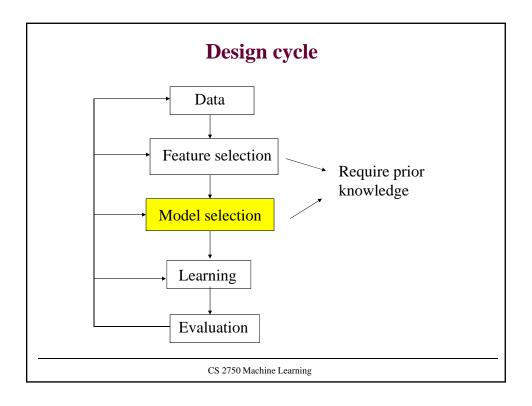


Feature selection

• The size (dimensionality) of a sample can be enormous

$$x_i = (x_i^1, x_i^2, ..., x_i^d)$$

- Example: document classification
 - thousands of documents
 - ->10,000 different words
 - **Features/Inputs:** counts of occurrences of different words
 - Overfit threat too many parameters to learn, not enough samples to justify the estimates the parameters of the model
- Feature selection: reduces the feature sets
 - Methods for removing input features



Model selection

- What is the right model to learn?
 - A prior knowledge helps a lot, but still a lot of guessing
 - Initial data analysis and visualization
 - We can make a good guess about the form of the distribution, shape of the function
 - Independences and correlations

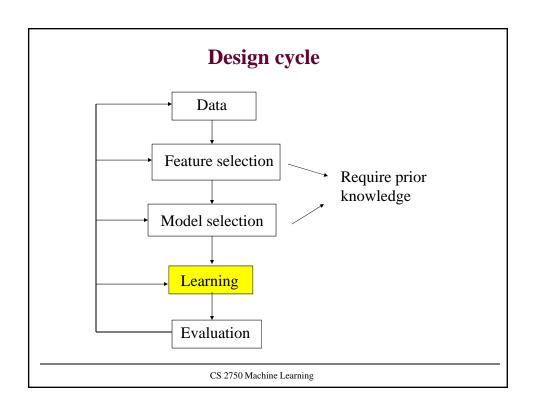
Overfitting problem

- Take into account the **bias and variance** of error estimates
- Simpler (more biased) model parameters can be estimated more reliably (smaller variance of estimates)
- Complex model with many parameters parameter estimates are less reliable (large variance of the estimate)

Solutions for overfitting

How to make the learner avoid the overfit?

- Assure sufficient number of samples in the training set
 - May not be possible (small number of examples)
- Hold some data out of the training set = validation set
 - Train (fit) on the training set (w/o data held out);
 - Check for the generalization error on the validation set, choose the model based on the validation set error (random re-sampling validation techniques)
- Regularization (Occam's Razor)
 - Explicit preference towards simple models
 - Penalize for the model complexity (number of parameters)
 by modifying the objective function



Learning

- Learning = optimization problem. Various criteria:
 - Mean square error

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} Error(\mathbf{w}) \qquad Error(\mathbf{w}) = \frac{1}{N} \sum_{i=1,...N} (y_i - f(x_i, \mathbf{w}))^2$$

- Maximum likelihood (ML) criterion

$$\Theta^* = \underset{\Theta}{\operatorname{arg max}} P(D \mid \Theta)$$
 $Error(\Theta) = -\log P(D \mid \Theta)$

- Maximum posterior probability (MAP)

$$\Theta^* = \underset{\Theta}{\operatorname{arg max}} P(\Theta \mid D) \qquad P(\Theta \mid D) = \frac{P(D \mid \Theta)P(\Theta)}{P(D)}$$

Other criteria:

hinge loss (used in the support vector machines)

CS 2750 Machine Learning

Learning

Learning = optimization problem

- Optimization problems can be hard to solve. Right choice of a model and an error function makes a difference.
- Parameter optimizations (continuous space)
 - Linear programming, Convex programming
 - Gradient methods: grad. descent, Conjugate gradient
 - Newton-Rhapson (2nd order method)
 - Levenberg-Marquard

Some can be carried **on-line** on a sample by sample basis

- Combinatorial optimizations (over discrete spaces):
 - Hill-climbing
 - Simulated-annealing
 - Genetic algorithms

Parametric optimizations

- Sometimes can be solved directly but this depends on the objective function and the model
 - **Example:** squared error criterion for linear regression
- Very often the error function to be optimized is not that nice.

$$Error(\mathbf{w}) = f(\mathbf{w})$$
 $\mathbf{w} = (w_0, w_1, w_2 \dots w_k)$

- a complex function of weights (parameters)

Goal:
$$\mathbf{w}^* = \arg\min_{\mathbf{w}} f(\mathbf{w})$$

• Example of a possible method: Gradient-descent method

Idea: move the weights (free parameters) gradually in the error decreasing direction

CS 2750 Machine Learning

Gradient descent method

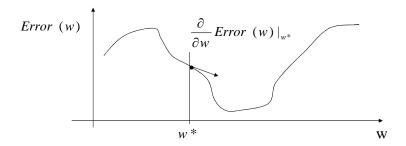
• Descend to the minimum of the function using the gradient information

Error (w) $\frac{\partial}{\partial w} Error (w)|_{w^*}$ w^*

• Change the parameter value of w according to the gradient

$$w \leftarrow w^* - \alpha \frac{\partial}{\partial w} Error(w)|_{w^*}$$

Gradient descent method



• New value of the parameter

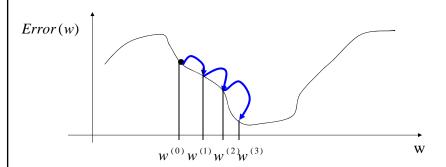
$$w \leftarrow w^* - \alpha \frac{\partial}{\partial w} Error(w)|_{w^*}$$

 $\alpha > 0$ - a learning rate (scales the gradient changes)

CS 2750 Machine Learning

Gradient descent method

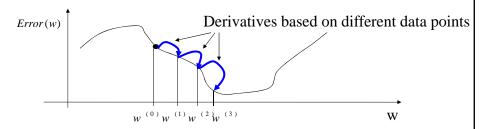
• To get to the function minimum repeat (iterate) the gradient based update few times



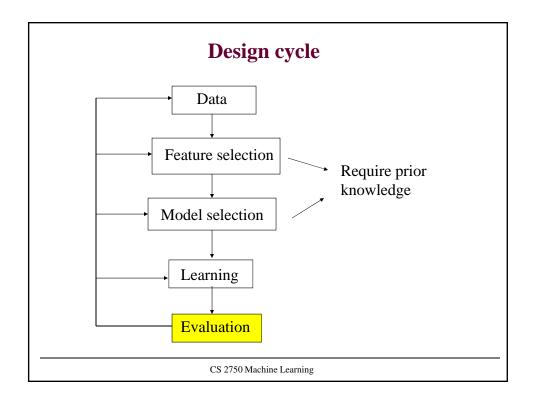
- Problems: local optima, saddle points, slow convergence
- More complex optimization techniques use additional information (e.g. second derivatives)

Batch vs on-line learning

- **Batch learning:** Error function looks at all data points E.g. $Error(\mathbf{w}) = \frac{1}{n} \sum_{i=1...n} (y_i f(x_i, \mathbf{w}))^2$ **On-line learning:** separates the contribution from a data point
- $Error_{\text{ON-LINE}}(\mathbf{w}) = (y_i f(x_i, \mathbf{w}))^2$
- **Example: On-line gradient descent**

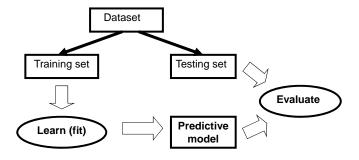


- Advantages: 1. simple learning algorithm
 - 2. no need to store data (on-line data streams)



Evaluation of learning models

- Simple holdout method
 - Divide the data to the training and test data



- Typically 2/3 training and 1/3 testing

CS 2750 Machine Learning

Evaluation

Other more complex methods

- Use multiple train/test sets
- Based on various random re-sampling schemes:
 - Random sub-sampling
 - Cross-validation
 - Bootstrap

