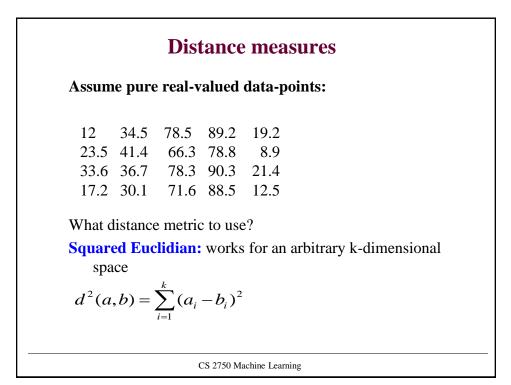
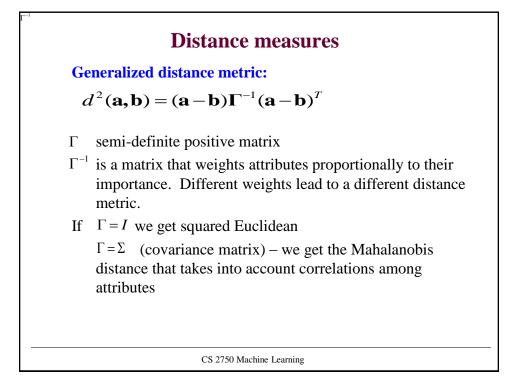
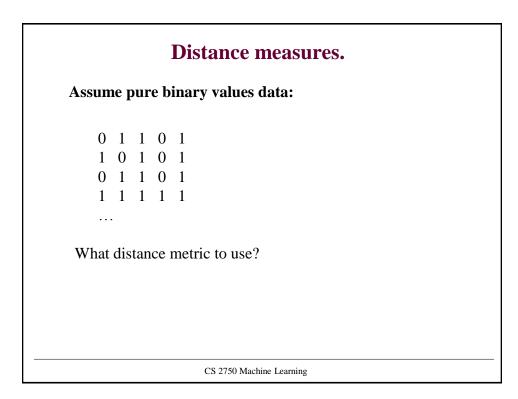

A set of pa We want to			n into groups b	ased on similarities
Patient #	Age	Sex	Heart Rate	Blood pressure
Patient 1	55	М	85	125/80
Patient 2	62	Μ	87	130/85
Patient 3	67	F	80	126/86
Patient 4	65	F	90	130/90
Patient 5	70	М	84	135/85

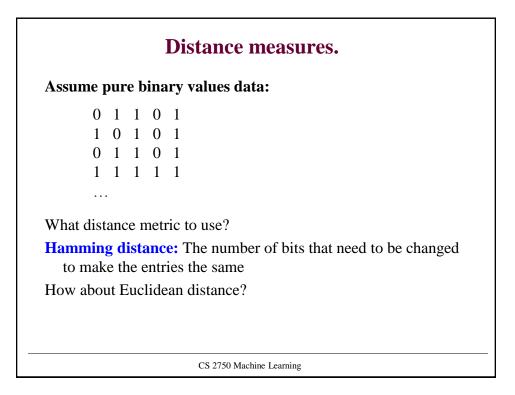
Clustering example


- A set of patient cases
- We want to partition them into the groups based on similarities

Patient #	Age	Sex	Heart Rate	Blood pressure
Patient 1	55	М	85	125/80
Patient 2	62	Μ	87	130/85
Patient 3	67	F	80	126/86
Patient 4	65	F	90	130/90
Patient 5	70	Μ	84	135/85
How to desig	n the d	istance	e metric to qua	ntify similarities?





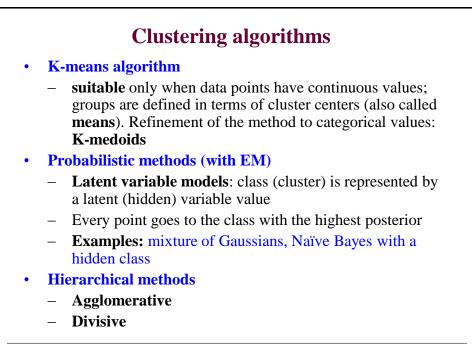

		Dist	tance	e mea	sures
Assum	e pure	e real-v	alued	data-p	oints:
12	34.5	78.5	89.2	19.2	
23.5	41.4	66.3	78.8	8.9	
33.6	36.7	78.3	90.3	21.4	
17.2	30.1	71.6	88.5	12.5	
•••					
What c	listance	e metric	c to use	e?	
Euclid	<mark>ian:</mark> w	orks fo	r an ar	bitrary	k-dimensional space
		$\sqrt{\sum_{i=1}^{k}}$			
		(CS 2750 M	achine Leari	ing

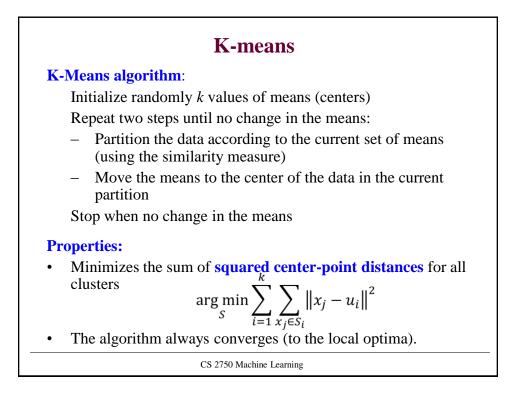
		Dist	ance	meas	sures.		
Assum	ne puro	e real-v	alued	data-p	oints:		
12	34.5	78.5	89.2	19.2			
23.5	41.4	66.3	78.8	8.9			
33.6	36.7	78.3	90.3	21.4			
17.2	30.1	71.6	88.5	12.5			
Manha	attan d	listance	e:				
works	for an	arbitrar	y k-dir	nensior	al space	e	
d	(a,b)	$=\sum_{i=1}^{k} $	$a_i - b$				
Et	tc						

Assun	ie p	our	e c	ate	gorical data:
	0	1	1	0	0
	1	0	3	0	1
	2	1	1	0	2
	1	1	1	1	2
What c	list	anc	e n	neti	ric to use?
		<u> </u>			e: The number of number of values that need make them the same

Patient 1 55 M 85 125/80 Patient 2 62 M 87 130/85
Patient 3 67 F 80 126/86
Patient 4 65 F 90 130/90
Patient 5 70 M 84 135/85

Patient #	Age	Sex	Heart Rate	Blood pressure .
Patient 1	55	Μ	85	125/80
Patient 2	62	Μ	87	130/85
Patient 3	67	F	80	126/86
Patient 4	65	F	90	130/90
Patient 5	70	Μ	84	135/85
	70	Μ		


Clustering

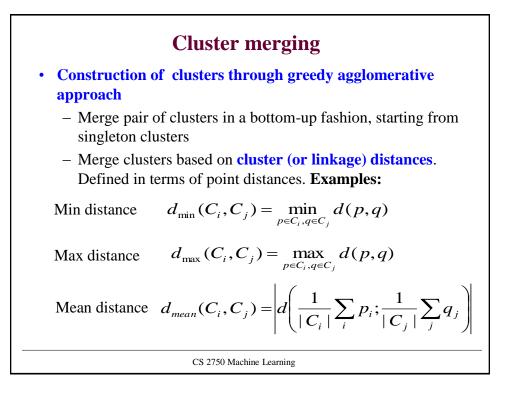

Clustering is useful for:

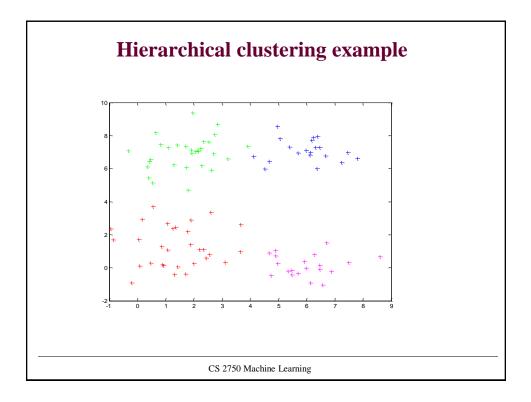
- Similarity/Dissimilarity analysis Analyze what data points in the sample are close to each other
- **Dimensionality reduction** High dimensional data replaced with a group (cluster) label
- **Data reduction:** Replaces many datapoints with the point representing the group mean

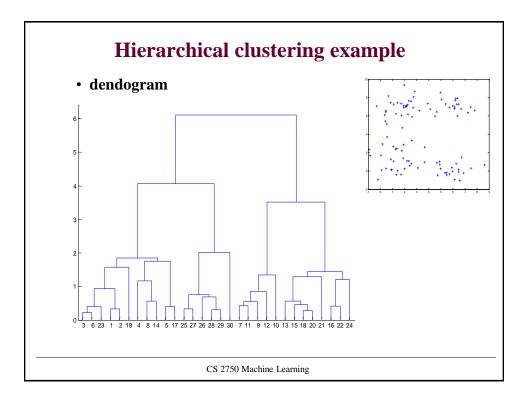
Problems:

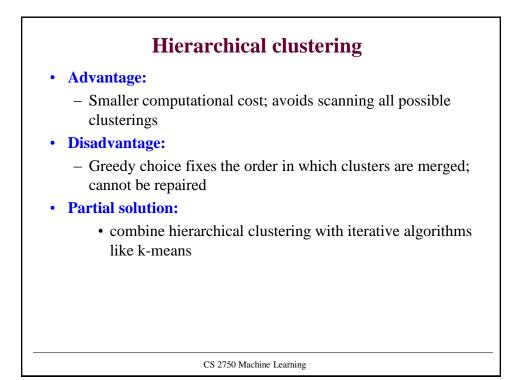
- Pick the correct similarity measure (problem specific)
- Choose the correct number of groups
 - Many clustering algorithms require us to provide the number of groups ahead of time

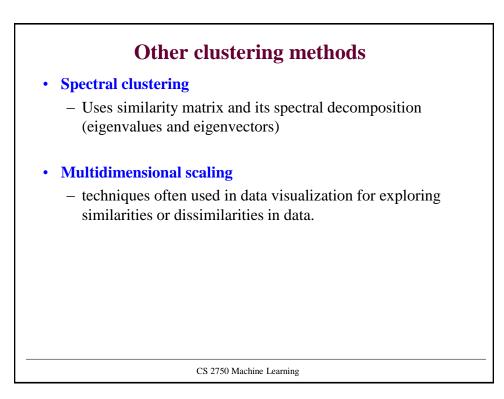
	K-means algorithm
•]	Properties:
	 converges to centers minimizing the sum of squared center- point distances (still local optima)
	 The result is sensitive to the initial means' values
•	Advantages:
	– Simplicity
	- Generality - can work for more than one distance measure
•]	Drawbacks:
	 Can perform poorly with overlapping regions
	 Lack of robustness to outliers
	- Good for attributes (features) with continuous values
	Allows us to compute cluster means
	• k-medoid algorithm used for discrete data
	CS 2750 Machine Learning


<section-header> Probabilistic (EM-based) algorithms Latent variable models Examples: Naïve Bayes with hidden class Mixture of Gaussians Mixture of Gaussians Partitioning: the data point belongs to the class with the highest posterior Advantages: Good performance on overlapping regions Robustness to outliers Data attributes can have different types of values Drawbacks: Be is computationally expensive and can take time to converge Density model should be given in advance




Hierarchical clustering


Approach:


- · Compute dissimilarity matrix for all pairs of points
 - uses standard or other distance measures
- Construct clusters greedily:
 - Agglomerative approach
 - Merge pair of clusters in a bottom-up fashion, starting from singleton clusters
 - Divisive approach:
 - Splits clusters in top-down fashion, starting from one complete cluster
- Stop the greedy construction when some criterion is satisfied
 - E.g. fixed number of clusters

