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Expectation Maximization (EM). 

Mixtures of Gaussians.  
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Learning probability distribution 

Basic learning settings: 

• A set of random variables  

• A model of the distribution over variables in X 

 with parameters  

• Data 

            s.t. 

Objective: find parameters       that describe the data  

Assumptions considered so far: 

– Known structure and parameterizations 

– Hidden variables  

– Missing values 
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Hidden variables 

Modeling assumption:  

Variables 

• We can add hidden variables – never observed in data 

Why to add hidden variables? 

• More flexibility in describing the distribution 

• Smaller parameterization of  

– New independences can be introduced via hidden 

variables 

Example:  

• Latent variable models 

–  hidden classes (categories) 
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Naïve Bayes with a hidden class variable 

Introduction of a hidden variable can reduce the number of 

parameters defining            

Example:  

• Naïve Bayes model with a hidden class variable 

 

 

 

 

 

 

• Useful in customer profiles 

– Class value = type of customers 
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Learning with hidden variables and 

missing values: EM 

Expectation maximization method 

The key idea of the method:  

Compute the parameter estimates iteratively by performing the 

following two steps:  

Two steps of the EM: 

1. Expectation step. For all hidden and missing variables (and 

their possible value assignments)  calculate their expectations 

for the current set of parameters 

2. Maximization step. Compute the new estimates of        by 

considering the expectations of the different value 

completions 

Stop when no improvement possible 

 

'Θ

Θ

 

CS 2750 Machine Learning 

 

Gaussian mixture model 
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Assume we have the following data 

Question: how to model its distribution?  
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Gaussian mixture model 
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Idea: each group of data-points is covered by one Gaussian 
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Mixture of Gaussians 

• Density function for the Mixture of Gaussians model 
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Gaussian mixture model 

Probability of occurrence of  a data point  x   

is modeled generatively as 

 

 

where 

 

          =  probability of a data point coming  

              from class (group) C=i  

 

          = class conditional density (modeled as a Gaussian) 

              for class i 

Special feature: C  is hidden !!!! 
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Generative classifier model 

• Generative classifier model (recall QDA or LDA) 

• Assume the class labels are known. The ML estimate is 
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Gaussian mixture model 

• In the Gaussian mixture Gaussians are not labeled 

• We can apply EM algorithm: 

– re-estimation based on the class posterior 
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Gaussian mixture algorithm 

• A special case:  

– a fixed covariance matrix for all hidden groups (classes)  

• Algorithm: 

Initialize means        for all classes i 

Repeat two steps until no change in the means: 

1. Compute the class posterior for each Gaussian and each 

point (a kind of responsibility for a Gaussian for a point) 

 

 

2. Move the means of the Gaussians to the center of the data, 

weighted by the responsibilities   

iμ

Responsibility: 

New mean: 
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Gaussian mixture model. Gradient ascent. 

• A set of parameters  

 

Assume unit variance terms and fixed priors 
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- very easy on-line update 
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EM versus gradient ascent 

Gradient ascent                                EM 
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K-means approximation to EM 

Mixture of Gaussians with the fixed covariance matrix: 

• posterior measures the responsibility of a Gaussian for every point 

 

 

 

• Re-estimation of means: 

 

• K- Means approximations 

• Only the closest Gaussian is made responsible for a point 

 

 

 

• Results in moving the means of  Gaussians to the center of the 

data points it covered in the previous step 
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K-means algorithm 

K-Means algorithm: 

Initialize k values of means (centers) 

Repeat two steps until no change in the means: 

– Partition the data according to the current means (using 

the similarity measure) 

– Move the means to the center of the data in the current 

partition 

 

• Used frequently for clustering data 

 

 

 


