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• SVMs for regression
• Non-parametric/instance 

based classification method

CS 2750 Machine Learning

Soft-margin SVM

• Allows some flexibility on crossing the separating hyperplane
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Soft-margin SVM

• Rewrite                                                             in
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Classification learning

• General form:

• Loss functions:

– Negative loglikelihood (used in the LR)

– Hinge loss (used in SVM)

• Regularization terms:

– L1 (lasso)

– L2 (ridge)
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Support vector machines

• The decision boundary:

• The decision:

• (!!):

• Decision on a new x requires to compute  the inner product 
between the examples

• Similarly, the optimization depends on 
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CS 2750 Machine Learning

Nonlinear case

• The linear case requires to compute
• The non-linear case can be handled by using a set of features. 

Essentially we map input vectors to (larger) feature vectors

• It is possible to use SVM formalism on feature vectors

• Kernel function

• Crucial idea: If we choose the kernel function wisely we can 
compute linear separation in the feature space implicitly such 
that we keep working in the original input space !!!!
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Kernel function example

• Assume                         and a feature mapping that maps the input 
into a quadratic feature set

• Kernel function for the feature space:

• The computation of the linear separation in the higher dimensional 
space is performed implicitly in the original input space
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Kernel trick

• Replace the inner product with a kernel

• A well chosen kernel leads to an efficient computation

Nonlinear extension
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Kernel functions

• Linear kernel

• Polynomial kernel

• Radial basis kernel
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Kernels

• Kernels define a similarity measure : 

– define a distance in between two objects 

• Design criteria: we want kernels to  be

– valid – Satisfy Mercer condition of positive semi-
definiteness

– good – embody the “true similarity” between objects

– appropriate – generalize well

– efficient – the computation of K(x,x’) is feasible

• NP-hard problems abound with graphs
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Kernels

• Research have proposed kernels for comparison of variety of 
objects:

– Strings

– Trees

– Graphs

• Cool thing:

– SVM algorithm can be now applied to classify a variety of 
objects 
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Regression = find a function that fits the data.

• A data point may be wrong due to the noise

Idea: Error from points which are close should count as a valid 
noise

• Line should be influenced by the real data not the noise.

Support vector machine for regression
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Linear model

• Training data:

• Our goal is to find a function f(x) that has at most ε deviation 
from the actually obtained target  for all the training data. 
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bbf  xw,xwx T)(

Linear model

Linear function:

We want a function that is:

• flat: means that one seeks small w

• all data points are within its ε neighborhood 

The problem can be formulated as a convex optimization 
problem:

All data points are assumed to be in the ε neighborhood 
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Linear model

• Real data: not all data points always fall into the ε 
neighborhood 

• Idea: penalize points that fall outside the ε neighborhood 
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Linear model

Linear function:

Idea: penalize points that fall outside the ε neighborhood
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ε-intensive loss function
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Linear model
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Lagrangian that solves the optimization problem

Optimization
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Derivatives with respect to primal variables
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Optimization

Maximize the dual
Inner product
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at the optimal solution the Lagrange multipliers 
are non-zero only for points outside the ε band.

Inner product
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Nonparametric vs Parametric Methods

Nonparametric models:

• More flexibility – no parametric model is needed

• But require storing the entire dataset

• and the computation is performed with all data examples.

Parametric models:

• Once fitted, only parameters need to be stored

• They are much more efficient in terms of computation

• But the model needs to be picked in advance
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Non-parametric Classification methods

• Given a data set with Nk data points from class Ck

and                        ,  we have

• and correspondingly

• Since                       ,  Bayes’ theorem gives

CS 2750 Machine Learning

K-Nearest-Neighbours for Classification

K = 3
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Nonparametric kernel-based classification

• Kernel function:  k(x,x’)

– Models similarity between x, x’

– Example: Gaussian kernel we used in the kernel density 
estimation

• Kernel for classification
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