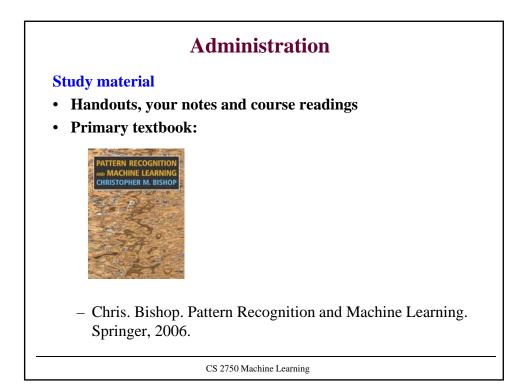
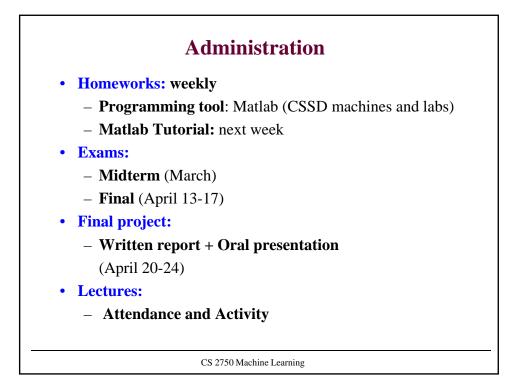
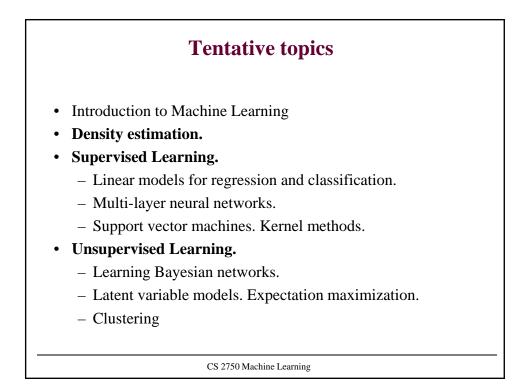


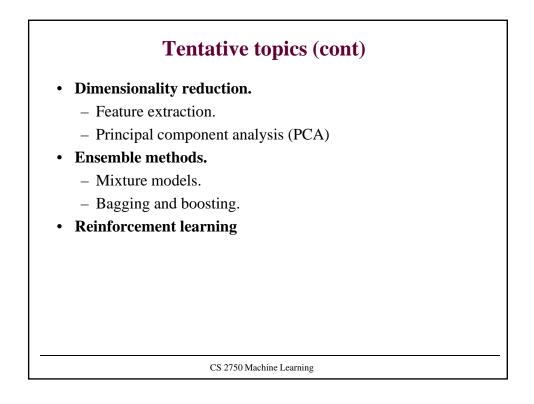
Administration	-
Instructor:	
Milos Hauskrecht	
milos@cs.pitt.edu	
5329 Sennott Square, x4-8845	
TA:	
Zhipeng (Patrick) Luo	
ZHL78@pitt.edu	
6509 Sennott Square	
Office hours: TBA	
CS 2750 Machine Learning	

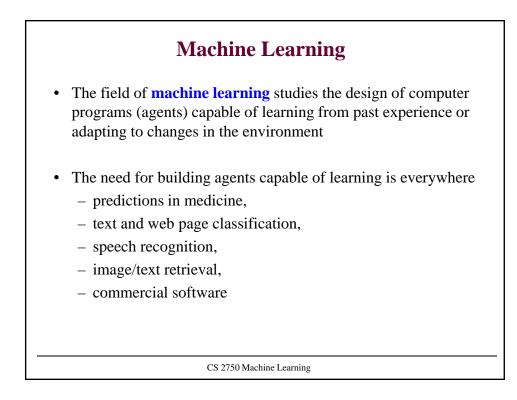


Administration
Study material
Other books:
 K. Murphy. Machine Learning: A probabilistic perspective, MIT Press, 2012.
– J. Han, M. Kamber. Data Mining. Morgan Kauffman, 2011.
 Friedman, Hastie, Tibshirani. Elements of statistical learning. Springer, 2nd edition, 2011.
 Koller, Friedman. Probabilistic graphical models. MIT Press, 2009.
 Duda, Hart, Stork. Pattern classification. 2nd edition. J Wiley and Sons, 2000.
– T. Mitchell. Machine Learning. McGraw Hill, 1997.
CS 2750 Machine Learning









Learning

Learning process:

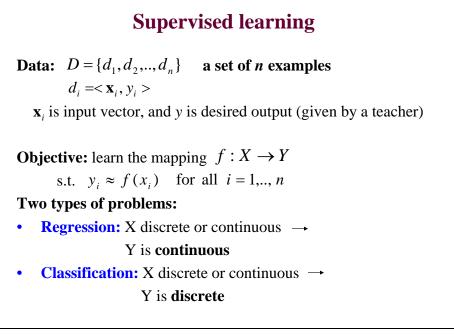
Learner (a computer program) processes data **D** representing past experiences and tries to either develop an appropriate response to future data, or describe in some meaningful way the data seen

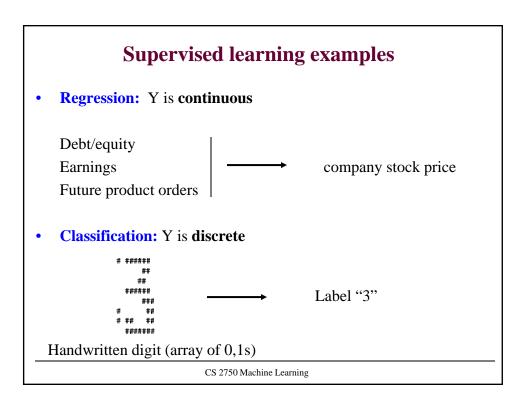
Example:

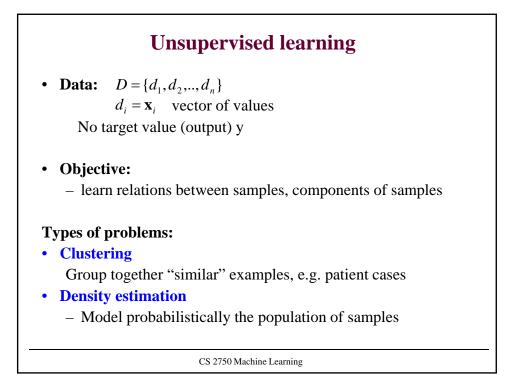
Learner sees a set of patient cases (patient records) with corresponding diagnoses. It can either try:

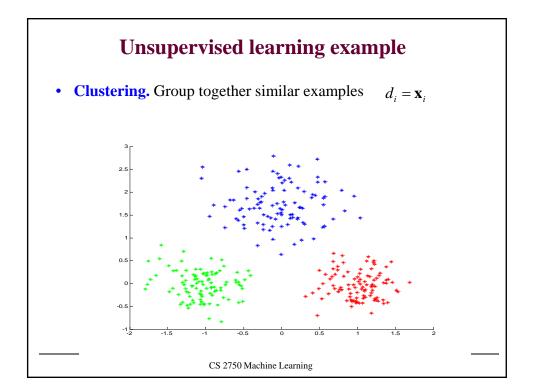
- to predict the presence of a disease for future patients
- describe the dependencies between diseases, symptoms

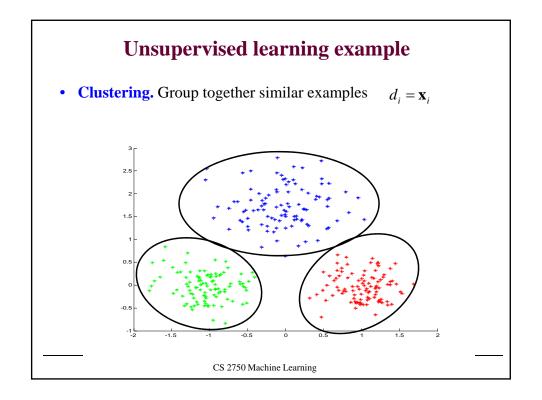
Types of learning	
Supervised learning	
- Learning mapping between input x and desired output	ıt y
- Teacher gives me y's for the learning purposes	
Unsupervised learning	
 Learning relations between data components 	
 No specific outputs given by a teacher 	
Reinforcement learning	
– Learning mapping between input \mathbf{x} and desired output	ıt y
 Critic does not give me y's but instead a signal (reinforcement) of how good my answer was 	-
Other types of learning:	
 Concept learning, Active learning, Transfer learn Deep learning 	ing,

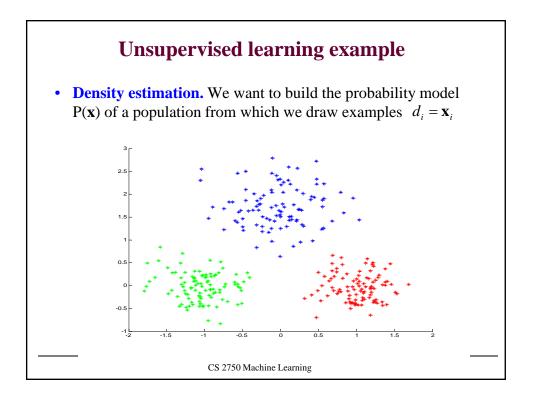


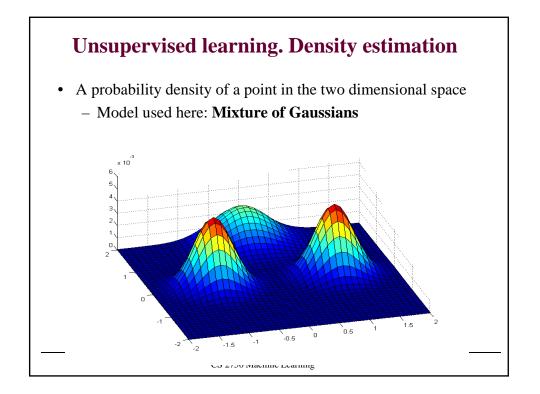


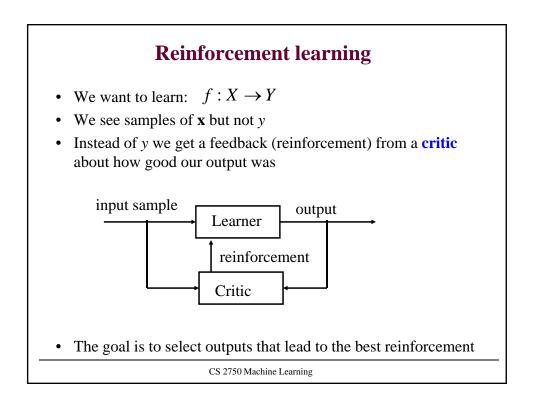


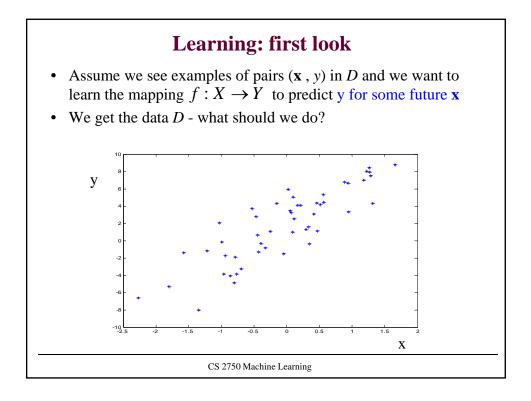


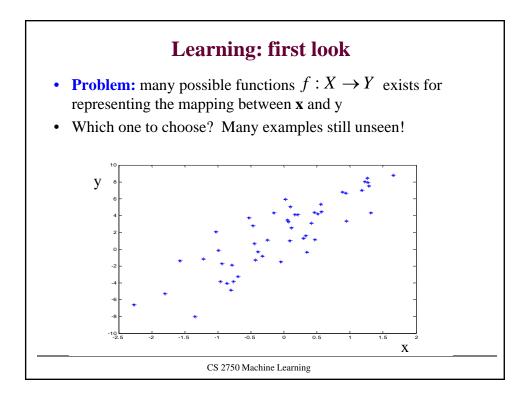


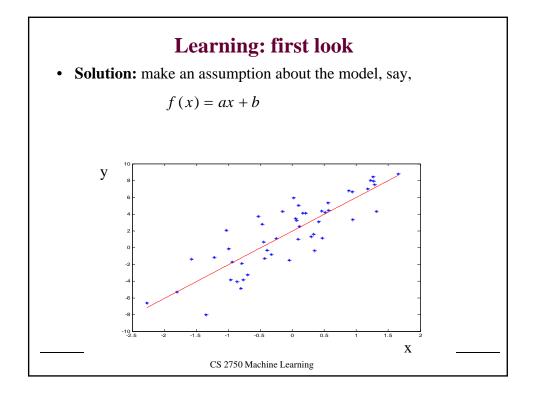


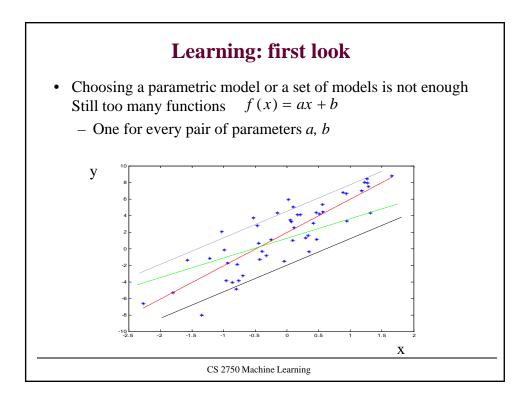


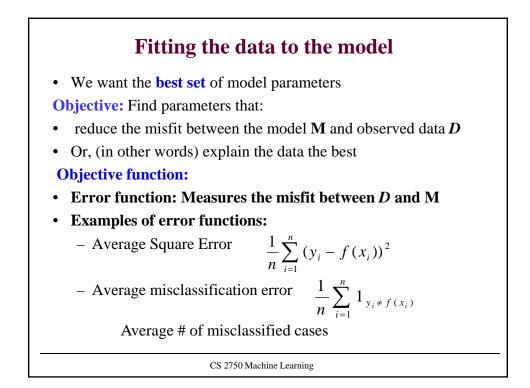


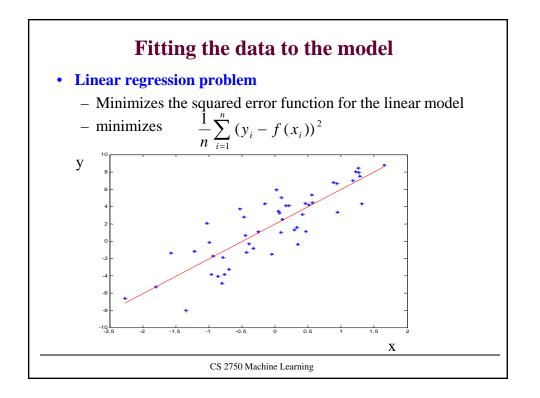






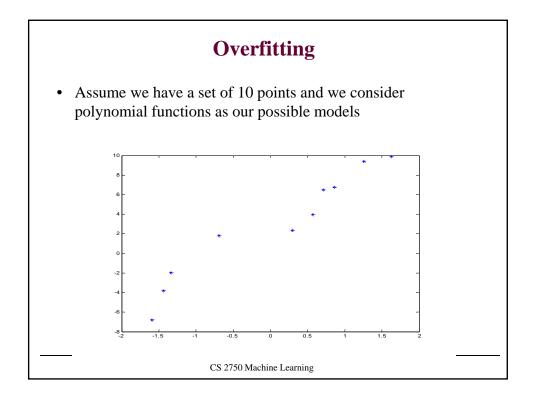


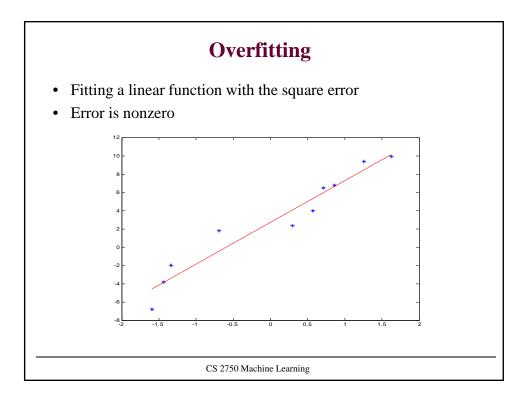


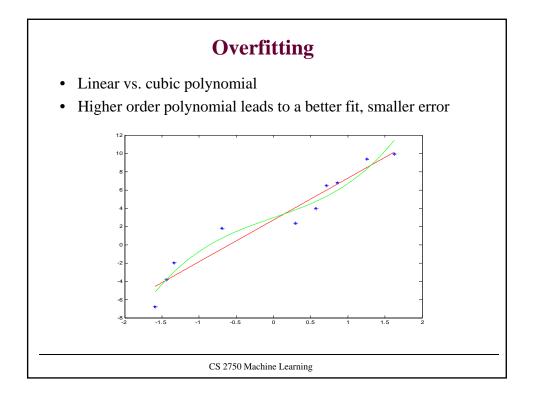


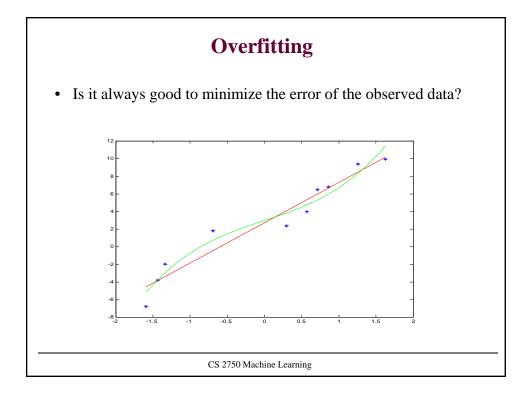
<section-header><text><text><equation-block><text><equation-block><equation-block><equation-block><equation-block><table-container>

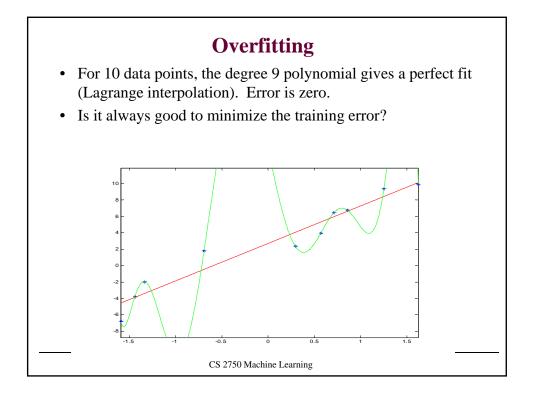
<section-header><section-header><section-header><list-item><list-item><text><text><text><text><equation-block><text>

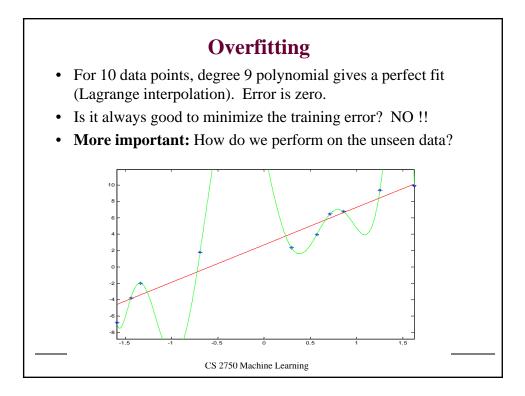


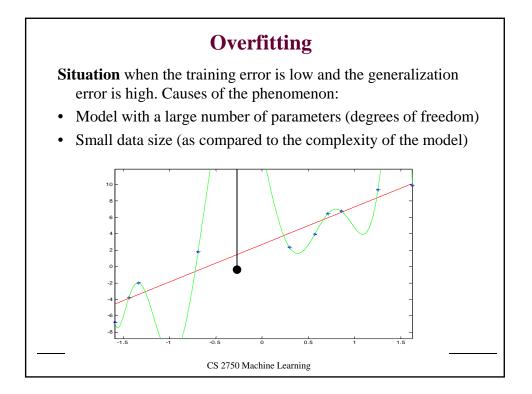












How to evaluate the learner's performance?

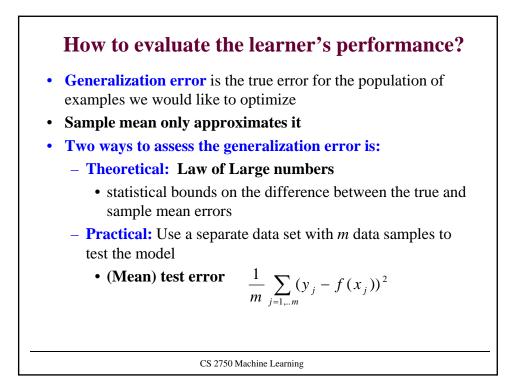
• Generalization error is the true error for the population of examples we would like to optimize

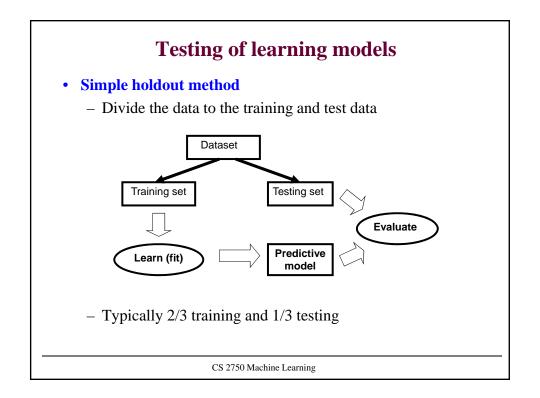
$$E_{(x,y)}[(y-f(x))^2]$$

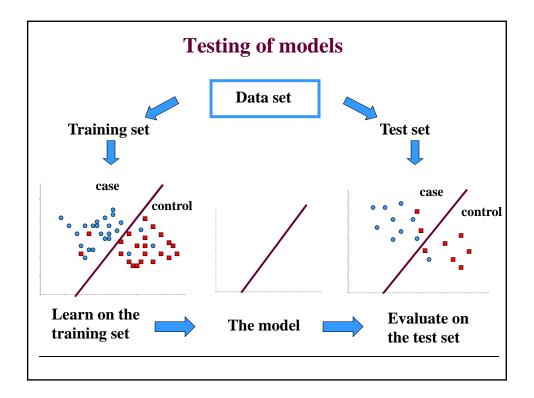
- But it cannot be computed exactly
- Sample mean only approximates the true mean
- Optimizing (mean) training error can lead to the overfit, i.e. training error may not reflect properly the generalization error

$$\frac{1}{n} \sum_{i=1,..n} (y_i - f(x_i))^2$$

• So how to test the generalization error?







Basic experimental setup to test the learner's performance

- 1. Take a dataset D and divide it into:
 - Training data set
 - Testing data set
- 2. Use the training set and your favorite ML algorithm to train the learner
- 3. Test (evaluate) the learner on the testing data set
- The results on the testing set can be used to compare different learners powered with different models and learning algorithms

