CS 2750 Machine Learning Lecture 3

Density estimation

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Announcements

Homework 1:

- due on Thursday, January 23 before the class

You should submit:

- A hardcopy of the report (before the lecture)
- Programs (if we ask for them) in electronic form
- Instructions for program submissions are on the course web site

Outline

Outline:

- Density estimation:
- Maximum likelihood (ML)
- Bayesian parameter estimates
- MAP
- Bernoulli distribution
- Binomial distribution
- Multinomial distribution
- Normal distribution

Density estimation

Density estimation: is an unsupervised learning problem

- Goal: Learn relations among attributes in the data

Data: $D=\left\{D_{1}, D_{2}, . ., D_{n}\right\}$
$D_{i}=\mathbf{x}_{i}$ a vector of attribute values
Attributes:

- modeled by random variables $\mathbf{X}=\left\{X_{1}, X_{2}, \ldots, X_{d}\right\}$ with
- Continuous or discrete valued variables

Density estimation: learn the underlying probability
distribution: $p(\mathbf{X})=p\left(X_{1}, X_{2}, \ldots, X_{d}\right)$ from \mathbf{D}

Density estimation

Data: $\quad D=\left\{D_{1}, D_{2}, . ., D_{n}\right\}$
$D_{i}=\mathbf{x}_{i} \quad$ a vector of attribute values
Objective: estimate the underlying probability distribution over variables $\mathbf{X}, p(\mathbf{X})$, using examples in D

Standard (iid) assumptions: Samples

- are independent of each other
- come from the same (identical) distribution (fixed $p(X)$)

Density estimation

Types of density estimation:

Parametric

- the distribution is modeled using a set of parameters Θ

$$
p(\mathbf{X} \mid \Theta)
$$

- Example: mean and covariances of a multivariate normal
- Estimation: find parameters Θ describing data D

Non-parametric

- The model of the distribution utilizes all examples in D
- As if all examples were parameters of the distribution
- Examples: Nearest-neighbor

Learning via parameter estimation

In this lecture we consider parametric density estimation
Basic settings:

- A set of random variables $\mathbf{X}=\left\{X_{1}, X_{2}, \ldots, X_{d}\right\}$
- A model of the distribution over variables in \boldsymbol{X} with parameters Θ : $\hat{p}(\mathbf{X} \mid \Theta)$
- Data $D=\left\{D_{1}, D_{2}, . ., D_{n}\right\}$

Objective: find parameters Θ such that $p(\mathbf{X} \mid \Theta)$ fits data D the best

Parameter estimation

- Maximum likelihood (ML)
maximize $p(D \mid \Theta, \xi)$
- yields: one set of parameters $\Theta_{M L}$
- the target distribution is approximated as:

$$
\hat{p}(\mathbf{X})=p\left(\mathbf{X} \mid \boldsymbol{\Theta}_{M L}\right)
$$

- Bayesian parameter estimation
- uses the posterior distribution over possible parameters

$$
p(\Theta \mid D, \xi)=\frac{p(D \mid \Theta, \xi) p(\Theta \mid \xi)}{p(D \mid \xi)}
$$

- Yields: all possible settings of Θ (and their "weights")
- The target distribution is approximated as:

$$
\begin{gathered}
\hat{p}(\mathbf{X})=p(\mathbf{X} \mid D)=\int_{\boldsymbol{\Theta}} p(X \mid \boldsymbol{\Theta}) p(\boldsymbol{\Theta} \mid D, \xi) d \boldsymbol{\Theta} \\
\text { CS } 2750 \text { Machine Learning }
\end{gathered}
$$

Parameter estimation

Other possible criteria:

- Maximum a posteriori probability (MAP)
maximize $p(\boldsymbol{\Theta} \mid D, \xi) \quad$ (mode of the posterior)
- Yields: one set of parameters $\boldsymbol{\Theta}_{\text {MAP }}$
- Approximation:

$$
\hat{p}(\mathbf{X})=p\left(\mathbf{X} \mid \boldsymbol{\Theta}_{M A P}\right)
$$

- Expected value of the parameter

$$
\hat{\boldsymbol{\Theta}}=E(\boldsymbol{\Theta}) \quad \text { (mean of the posterior) }
$$

- Expectation taken with regard to posterior $p(\boldsymbol{\Theta} \mid D, \xi)$
- Yields: one set of parameters
- Approximation:

$$
\hat{p}(\mathbf{X})=p(\mathbf{X} \mid \hat{\boldsymbol{\Theta}})
$$

Parameter estimation. Coin example.

Coin example: we have a coin that can be biased
Outcomes: two possible values -- head or tail
Data: D a sequence of outcomes x_{i} such that

- head $\quad x_{i}=1$
- tail $x_{i}=0$

Model: probability of a head θ probability of a tail $(1-\theta)$

Objective:

We would like to estimate the probability of a head $\hat{\theta}$ from data

Parameter estimation. Example.

- Assume the unknown and possibly biased coin
- Probability of the head is θ
- Data:

H H T THHTHTHTTTHTHHHHTHHHHT

- Heads: 15
- Tails: 10

What would be your estimate of the probability of a head ?

$$
\tilde{\theta}=?
$$

Parameter estimation. Example

- Assume the unknown and possibly biased coin
- Probability of the head is θ
- Data:

H H T THHTHTHTTTHTHHHHTHHHHT

- Heads: 15
- Tails: 10

What would be your choice of the probability of a head ?
Solution: use frequencies of occurrences to do the estimate

$$
\tilde{\theta}=\frac{15}{25}=0.6
$$

This is the maximum likelihood estimate of the parameter θ

Probability of an outcome

Data: D a sequence of outcomes x_{i} such that

- head $x_{i}=1$
- tail $\quad x_{i}=0$

Model: probability of a head θ probability of a tail $(1-\theta)$

Assume: we know the probability θ
Probability of an outcome of a coin flip x_{i}
$P\left(x_{i} \mid \theta\right)=\theta^{x_{i}}(1-\theta)^{\left(1-x_{i}\right)} \longleftarrow \quad$ Bernoulli distribution

- Combines the probability of a head and a tail
- So that x_{i} is going to pick its correct probability
- Gives θ for $x_{i}=1$
- Gives (1- θ) for $x_{i}=0$

Probability of a sequence of outcomes.

Data: D a sequence of outcomes x_{i} such that

- head $\quad x_{i}=1$
- tail $\quad x_{i}=0$

Model: probability of a head θ probability of a tail $(1-\theta)$
Assume: a sequence of independent coin flips

$$
D=\text { H H T H T H } \quad \text { (encoded as } D=110101)
$$

What is the probability of observing the data sequence \mathbf{D} :

$$
P(D \mid \theta)=?
$$

Probability of a sequence of outcomes.

Data: D a sequence of outcomes x_{i} such that

- head $x_{i}=1$
- tail $\quad x_{i}=0$

Model: probability of a head θ probability of a tail $(1-\theta)$
Assume: a sequence of coin flips $D=$ H H T H T H encoded as $D=110101$

What is the probability of observing a data sequence \mathbf{D} :

$$
P(D \mid \theta)=\theta \theta(1-\theta) \theta(1-\theta) \theta
$$

Probability of a sequence of outcomes.

Data: D a sequence of outcomes x_{i} such that

- head $\quad x_{i}=1$
- tail $\quad x_{i}=0$

Model: probability of a head θ probability of a tail (1- θ)
Assume: a sequence of coin flips $D=$ H H T H T H encoded as $D=110101$

What is the probability of observing a data sequence \mathbf{D} :

$$
P(D \mid \theta)=\theta \theta(1-\theta) \theta(1-\theta) \theta
$$

likelihood of the data

Probability of a sequence of outcomes.

Data: D a sequence of outcomes x_{i} such that

- head $\quad x_{i}=1$
- tail $\quad x_{i}=0$

Model: probability of a head θ probability of a tail $(1-\theta)$
Assume: a sequence of coin flips $D=$ H H T H T H encoded as $D=110101$
What is the probability of observing a data sequence \mathbf{D} :

$$
\begin{aligned}
& P(D \mid \theta)=\theta \theta(1-\theta) \theta(1-\theta) \theta \\
& P(D \mid \theta)=\prod_{i=1}^{6} \theta^{x_{i}}(1-\theta)^{\left(1-x_{i}\right)}
\end{aligned}
$$

Can be rewritten using the Bernoulli distribution:

The goodness of fit to the data

Learning: we do not know the value of the parameter θ
Our learning goal:

- Find the parameter θ that fits the data D the best?

One solution to the "best": Maximize the likelihood

$$
P(D \mid \theta)=\prod_{i=1}^{n} \theta^{x_{i}}(1-\theta)^{\left(1-x_{i}\right)}
$$

Intuition:

- more likely are the data given the model, the better is the fit

Note: Instead of an error function that measures how bad the data fit the model we have a measure that tells us how well the data fit :

$$
\text { Error }(D, \theta)=-P(D \mid \theta)
$$

Example: Bernoulli distribution

Coin example: we have a coin that can be biased
Outcomes: two possible values -- head or tail
Data: D a sequence of outcomes x_{i} such that

- head $\quad x_{i}=1$
- tail $\quad x_{i}=0$

Model: probability of a head θ probability of a tail $(1-\theta)$
Objective:
We would like to estimate the probability of a head $\hat{\theta}$
Probability of an outcome x_{i}

$$
P\left(x_{i} \mid \theta\right)=\theta^{x_{i}}(1-\theta)^{\left(1-x_{i}\right)} \quad \text { Bernoulli distribution }
$$

