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Concept Learning 

Outline:

• Learning boolean functions

• Most general and most specific consistent hypothesis.

• Mitchell’s version space algorithm

• Probably approximately correct (PAC) learning.

• Sample complexity for PAC.

• Vapnik-Chervonenkis (VC) dimension.

• Improved sample complexity bounds.
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Learning concepts

Assume objects (examples) described in terms of attributes: 

Concept = a set of objects
• Concept learning:

Given a sample of labeled objects we want to learn a boolean 
mapping from objects to T/F identifying an underlying concept
– E.g. EnjoySport concept

• Concept (hypothesis) space H
– Restriction on the boolean description of concepts

Sky     Air-Temp    Humidity    Wind     Water     Forecast      EnjoySport

Sunny    Warm        Normal      Strong     Warm    Same           yes
Rainy     Cold          Normal      Strong     Warm    Change        no  
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Learning concepts

• Object (instance) space  X

• Concept (hypothesis) spaces H

!!!!

Assume n binary attributes (e.g. true/false, warm/cold)

• Instance space X:

• Concept space H:

XH 

different objectsn2

possible concepts
n22

= all possible subsets of objects
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Learning concepts

• Problem: Concept space too large

• Solution: restricted hypothesis space H 

• Example: conjunctive concepts

• Other restricted spaces:

)Weather()Sky( ColdSunny 

n3 possible concepts

(...))( 731  aaa3-CNF  (or k-CNF)

(...))( 951  aaa3-DNF (or k-DNF)

Why?
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Learning concepts

• After seeing k examples the hypothesis space (even if 
restricted) can have many consistent concept hypotheses

• Consistent hypothesis: a concept c that evaluates to T on all 
positive examples and to F on all negatives.

• What to learn?

– General to specific learning. Start from all true and refine 
with the maximal (consistent) generalization.

– Specific to general learning. Start from all false and refine 
with the most restrictive specialization.

– Version space learning. Keep all consistent hypothesis 
around – the combination of the above two cases.
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Specific to general learning 
(for conjunctive concepts)

?)?,,??,,(1 StrongSunnyh 
?)?,?,?,?,,(2 Sunnyh 

Assume two hypotheses:

h2 is more general than h1, 
h1 is a special case (specialization of) h2

Specific to general learning:
• start from the all-false hypothesis
• by scanning samples, gradually refine the hypothesis (make it

more general) whenever it does not satisfy the new sample
seen (keep the most restrictive specialization of positives)

),,,,,(0 h

Then we say that:

arbitrary
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Specific to general learning. Example

),,,,,( h

(Sunny,Warm, Normal, Strong, Warm, Same)   T

(Rainy, Cold, Normal, Strong, Warm, Change)  F

),,,,,( SameWarmStrongNormalWarmSunnyh 

),,,,,( SameWarmStrongNormalWarmSunnyh 

(Sunny,Warm, High, Strong, Warm, Same)   T

),,?,,,( SameWarmStrongWarmSunnyh 

(Sunny,Warm, High, Strong, Cool, Same)   T

)?,,?,,,( SameStrongWarmSunnyh 

Conjunctive concepts, target is a conjunctive concept

All false
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General to specific learning

• Dual problem to the specific to general learning

• Start from the all true hypothesis

• Refine the concept description such that all samples are 
consistent (keep maximal possible generalization)

?)?,?,?,?,(?,0 h

(Sunny,Warm, Normal, Strong, Warm, Same)   T

(Rainy, Cold, Normal, Strong, Warm, Change)  F

(Sunny,Warm, High, Strong, Warm, Same)   T

)?,?,?,?,(?,

?),?,?,?,(?,?),?,?,?,?,,(

Same

WarmSunnyh 

?)?,?,?,?,(?,h

?)?,?,?,?,(?,h

?)?,?,?,?,(?,h
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Mitchell’s version space algorithm

Most general rule

Most specific rule

Upper bound (fringe)

Lower bound (fringe)
Pushed up by + examples 

Pushed down by  - examples

• Keeps the space of consistent hypotheses

Version space
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Mitchell’s version space algorithm

• Keeps and refines the fringes of the version space

• Converges to the target concept whenever the target is a 
member of the hypotheses space H

• Assumption:

– No noise in the data samples (the same example has always 
the same label)

• The hope is that the fringe is always small 

Is this correct ?
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Exponential fringe set – example

Conjunctive concepts, upper fringe (general to specific)

Ttruetruetruetruetrue ),...,,,,(Samples:

Ftruetruetruefalsefalse ),...,,,,(

Ftruefalsefalsetruetrue ),...,,,,(

Ffalsefalsetruetruetrue ),,...,,,(
...

n
2

1

Maximal generalizations – different hypotheses we need to
remember ?),?,...,,?,,( truetruetrue

?),?,...,,,(?, truetruetrue

?),,...,?,?,,( truetruetrue

)?,,...,?,,(?, truetruetrue
...

22
n
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Learning concepts

• Version space algorithm may require large number of samples 
to converge to the target concept

– In the worst case we must see all concepts before 
converging to it.

– The samples may come from different distributions – it 
may take a very long time to see all examples

• The fringe can go exponential in the number of attributes

• Alternative solution: Select a hypothesis that is consistent after 
some number of (+, -) samples is seen by our algorithm

• Can we tell how far are we from the solution?

Yes !!! PAC framework develops the criteria for measuring 
the accuracy of our choice in probabilistic terms
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Valiant’s framework

• Probability distribution from which samples are drawn

• There is an error permitted in assigning the labels to examples

– The concept learned does not have to be perfect but it 
should not be very far from the target concept

)()(),( TTT cxcxPcxcxPccError 

c
Tc - target concept

- learned concept
x - next sample from the distribution

 - accuracy parameter

We would like to have concept such that ),( ccError T
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PAC learning

• To get the error to be smaller than the accuracy parameter in 
all cases may be hard:
– Some examples may be very rare and to see them may 

require large number of samples
• Instead we choose:

• Probably approximately correct (PAC) learning
With probability              a concept with an   error not more  
than       is found

  1)),(( ccErrorP T

where        is a confidence factor

1

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Sample complexity of PAC learning

• How many samples we need to see to satisfy PAC criterion?

Assume:

we saw m independent samples drawn from the distribution, and 

h is a hypothesis that is consistent with all m examples and its 
error is larger than epsilon ),( hcError T

)1()given a with consistent is sample (a  hP
mhmP )1()given  a with consistent are samples ( 

There are at most |H| hypotheses in the space

mHmP )1(samples)surviveshypothesisbadany( 
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Sample complexity of PAC learning

mHmP )1(samples)surviveshypothesisbadany( 
meH 

In the PAC framework we want to bound this probability with
the confidence factor 

  meH

Expressing for m


 )ln)/1(ln( H

m




After m samples satisfying the above inequality any consistent
hypothesis satisfies the PAC criterion
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Efficient PAC learnability

• The concept is efficiently PAC learnable if the time it takes to 
output the concept is polynomial in

Two aspects:

• Sample complexity – a number of examples needed to learn 
the concept satisfying PAC criterion

– A prerequisite to efficient PAC learnability

• Time complexity – the time it takes to find the concept

– Even if the sample complexity is OK, the learning 
procedure may not be efficient (e.g. exponential fringe)

 /1,/1,n
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Efficient PAC learnability

• Sample complexities depends on the hypothesis space we use

• Conjunctive concepts

• All possible concepts (unbiased hypothesis space)

n3 possible concepts





 )3ln)/1(ln()3ln)/1(ln( n

m
n 










 )2ln2)/1(ln()2ln)/1(ln( 2 nn

m







efficient

inefficient
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Efficient PAC learnability

• Polynomial sample complexity is necessary but not sufficient

• Algorithm should work in polynomial time

• Assume: learning conjunctive concepts

– Specific to general learning. It is sufficient to keep one 
hypothesis around. The most specific description of all 
positive examples. Can be done in poly time.

– General to specific learning. We need to keep the complete 
upper fringe which can be exponential. Cannot be done in 
poly time.

• Other concept (hypothesis) spaces with poly sample complexity:

– k-DNF – cannot be PAC learned in poly time.

– k-CNF – polynomial time solution
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Learning 3-CNF

• Sample complexity for the k-CNF and k-DNF
• k-DNF – cannot be learned  efficiently
• k-CNF – can be learned efficiently. How?

Algorithm (specific to general learning):
• Start with the conjunction of all possible clauses (always false)
• On positive example any clause that is not true is deleted
• On negative examples do nothing

Interesting Any k-DNF can be converted into k-CNF

...)()( 542731  aaaaaaAssume 3-CNF

Only a polynomial number of clauses with at most 3 variables !!
)()2(2)1(22)1(222 3nOnnnnnn 
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Quantifying inductive bias

• During learning only small fraction of samples seen

• We need to generalize to unseen examples 

• Choice of the hypotheses space restrict our learning options –
biases our learning

• Other biases: preference towards simpler hypothesis, smaller 
degrees of freedom 

Questions:

How to measure the bias? 

To what extent our biases affect our learning capabilities?

Can we learn even if the hypotheses space is infinite? 


 )ln)/1(ln( H

m



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Vapnik-Chervonenkis dimension

• Measures the biases of the concept space

• Allows us to:

– Obtain better sample complexity bound

– Can be extended to attributes with infinite value spaces.

• VC idea: do not measure the size of the space, but the number 
of distinct instances that can be completely discriminated  
using H

Example: H is a set of space of rectangles

+ +

-

-

-

+
-

+

+

Discrimination of labelings of 3 points with rectangles
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Shattering of a set of instances

• A set of instances 

• H shatters S if for every dichotomy (combination of labels) 
there is a hypothesis h consistent with the dichotomy

XS 

Example: H is a set of space of rectangles

+ +

-

-

-

+
-

+

+

A set of 3 instances (most flexible choice) 

Dichotomy 1 Dichotomy 2 Dichotomy k

32 different dichotomies, hypothesis for each of them
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Vapnik-Chervonenkis dimension

• VC dimension of a hypothesis space H is the size of the largest 
subset of instances that is shattered by H.

• Example: rectangles (VC at least 3)

Try 4:
+ +

+

+

+

+

+
+ +

-

-

-

Can be shattered (for the most flexible 4), VC dimension at least 4

Try 5: +

+

+

+
-

No set of 5 points that can be shattered, thus VC dimension is 4 
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VC dimension and sample complexity

• One can derive the sample complexity bound  for PAC 
learning using VC dimension instead of hypothesis space size

(we won’t do it here)


 ))/13ln()dim(VC8)/2ln(4( H

m



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Adding noise

• We have a target concept but there is a chance of mislabeling 
the examples seen

• Can we PAC-learn also in this case?

• Blumer (1986). If h is a hypothesis that agrees with at least

samples drawn from the distribution then

Mitchell gives the sample complexity bound for the choice of 
the hypothesis with the best training error 

)ln(
1


n

m 

  )),(( TcherrorP
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Summary

• Learning boolean functions

• Most general and most specific consistent hypothesis.

• Mitchell’s version space algorithm

• Probably approximately correct (PAC) learning.

• Sample complexity for PAC.

• Vapnik-Chervonenkis (VC) dimension.

• Improved sample complexity bounds. 

• Adding noise.


