Dimensionality reduction Feature selection

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Dimensionality reduction. Motivation.

- Is there a lower dimensional representation of the data that captures well its characteristics?
- Assume:
- We have an data $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, . ., \mathbf{x}_{\mathrm{N}}\right\}$ such that

$$
\mathbf{x}_{i}=\left(x_{i}^{1}, x_{i}^{2}, \ldots, x_{i}^{d}\right)
$$

- Assume the dimension d of the data point \boldsymbol{x} is very large
- We want to analyze \boldsymbol{x}
- Methods of analysis are sensitive to the dimensionality d
- Our goal: Find a lower dimensional representation of data
- Two learning problems:
- supervised
- unsupervised

Dimensionality reduction for classification

- Classification problem example:
- We have an input data $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, . ., \mathbf{x}_{\mathrm{N}}\right\}$ such that

$$
\mathbf{x}_{i}=\left(x_{i}^{1}, x_{i}^{2}, \ldots, x_{i}^{d}\right)
$$

and a set of corresponding output labels $\left\{y_{1}, y_{2}, \ldots, y_{N}\right\}$

- Assume the dimension d of the data point \boldsymbol{x} is very large
- We want to classify \boldsymbol{x}
- Problems with high dimensional input vectors
- A large number of parameters to learn, if a dataset is small this can result in:
- Large variance of estimates and overfit
- it becomes hard to explain what features are important in the model (too many choices some can be substitutable)

Dimensionality reduction

- Solutions:
- Selection of a smaller subset of inputs (features) from a large set of inputs; train classifier on the reduced input set
- Combination of high dimensional inputs to a smaller set of features $\phi_{k}(\mathbf{x})$; train classifier on new features

Feature selection

How to find a good subset of inputs/features?

- We need:
- A criterion for ranking good inputs/features
- Search procedure for finding a good set of features
- Feature selection process can be:
- Dependent on the learning task
- e.g. classification
- Selection of features affected by what we want to predict
- Independent of the learning task
- Unsupervised methods
- may lack the accuracy for classification/regression tasks

Task-dependent feature selection

Assume:

- Classification problem: \mathbf{x} - input vector, y - output
- Feature mappings $\boldsymbol{\varphi}=\left\{\phi_{1}(\mathbf{x}), \phi_{2}(\mathbf{x}), \ldots \phi_{k}(\mathbf{x}), \ldots\right\}$

Objective: Find a subset of features that gives/preserves most of the output prediction capabilities
Selection approaches:

- Filtering approaches
- Filter out features with small predictive potential
- done before classification; typically uses univariate analysis
- Wrapper approaches
- Select features that directly optimize the accuracy of the multivariate classifier
- Embedded methods
- Feature selection and learning closely tied in the method

Feature selection through filtering

- Assume:
- Classification problem: \mathbf{x} - input vector, y - output
- Inputs in x or feature mappings $\phi_{k}(\mathbf{x})$
- How to select the feature:
- Univariate analysis
- Pretend that only one variable, x_{k}, exists
- See how well it predicts the output y alone
- Example: differentially expressed features (or inputs)
- Good separation in binary (case/control settings)

Differentially expressed features

- Scores for measuring the differential expression
- T-Test score (Baldi \& Long)
- Based on the test that two groups come from the same population
- Fisher Score Fisher (i) $=\frac{\mu_{i}^{(+)^{2}}-\mu_{i}^{(-)^{2}}}{\sigma_{i}^{(+)^{2}}+\sigma_{i}^{(-)^{2}}}$
- Area under Receiver Operating Characteristic (AUC) score

Problems:

- if many random features, the features with a good differentially expressed score must arise
- Techniques to reduce FDR (False discovery rate) and FWER (Family wise error).

Feature filtering

Other univariate scores:

- Correlation coefficients

$$
\rho\left(\phi_{k}, y\right)=\frac{\operatorname{Cov}\left(\phi_{k}, y\right)}{\sqrt{\operatorname{Var}\left(\phi_{k}\right) \operatorname{Var}(y)}}
$$

- Measures linear dependences
- Mutual information
$I\left(\phi_{k}, y\right)=\sum_{i} \sum_{j} \widetilde{P}\left(\phi_{k}=j, y=i\right) \log _{2} \frac{\tilde{P}\left(\phi_{k}=j, y=i\right)}{\widetilde{P}\left(\phi_{k}=j\right) \widetilde{P}(y=i)}$
- Univariate assumptions:
- Only one feature and its effect on y is incorporated in the mutual information score
- Effects of two features on y are independent
- What to do if the combination of features gives the best prediction?

Feature selection: dependent features

Filtering with dependent features

- Let $\boldsymbol{\varphi}$ be a current set of features (starting from complete set)
- We can remove feature $\phi_{k}(\mathbf{x})$ from it when: $\widetilde{P}\left(y \mid \boldsymbol{\varphi} \backslash \phi_{k}\right) \approx \tilde{P}(y \mid \boldsymbol{\varphi}) \quad$ for all values of ϕ_{k}, y
- Repeat removals until the probabilities differ.

Problem: how to compute/estimate $\widetilde{P}\left(y \mid \boldsymbol{\varphi} \backslash \phi_{k}\right), \widetilde{P}(y \mid \boldsymbol{\varphi})$?
Solution: make some simplifying assumption about the underlying probabilistic model

- Example: use a Naïve Bayes
- Advantage: speed, modularity, applied before classification
- Disadvantage: may not be as accurate

Feature selection: wrappers

Wrapper approach:

- The feature selection is driven by the prediction accuracy of the classifier (regressor) we actually want to built
How to find the appropriate feature set?
- If the dimension is \mathbf{d} then there $\mathbf{2 d}$
- Idea: Greedy search in the space of classifiers
- Gradually add features improving most the quality score
- Gradually remove features that effect the accuracy the least
- Score should reflect the accuracy of the classifier (error) and also prevent overfit
- Standard way to measure the quality:
- Internal cross-validation (m-fold cross validation)

Internal cross-validation

- Split train set: to internal train and test sets
- Internal train set: train different models (defined e.g. on different subsets of features)
- Internal test set/s: estimate the generalization error and select the best model among possible models
- Internal cross-validation (m-fold):
- Divide the train data into m equal partitions (of size N / m)
- Hold out one partition for validation, train the classifiers on the rest of data
- Repeat such that every partition is held out once
- The estimate of the generalization error of the learner is the mean of errors of on all partitions

Feature selection: wrappers

- Greedy (forward) search:
- logistic regression model with features

Start with $p(y=1 \mid \mathbf{x}, \mathbf{w})=g\left(w_{o}\right)$
Choose feature x_{i} with the best error (in the internal step)

$$
p(y=1 \mid \mathbf{x}, \mathbf{w})=g\left(w_{o}+w_{i} x_{i}\right)
$$

Choose feature x_{j} with the best error (in the internal step)

$$
p(y=1 \mid \mathbf{x}, \mathbf{w})=g\left(w_{o}+w_{i} x_{i}+w_{j} x_{j}\right)
$$

Etc.
When to stop ?
Goal: Stop adding features when the error on the data stops descreasing

Embedded methods

- Feature selection + classification model learning done together
- Embedded models:
- Regularized models
- Models of higher complexity are explicitly penalized leading to 'virtual' removal of inputs from the model
- Regularized logistic/linear regression
- Support vector machines
- Optimization of margins penalizes nonzero weights
- CART/Decision trees

Dimensionality reduction

- Is there a lower dimensional representation of the data that captures well its characteristics?
- Assume:
- We have an data $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, . ., \mathbf{x}_{\mathrm{N}}\right\}$ such that $\mathbf{x}_{i}=\left(x_{i}^{1}, x_{i}^{2}, \ldots, x_{i}^{d}\right)$
- Assume the dimension d of the data point \boldsymbol{x} is very large
- We want to analyze \boldsymbol{x}
- Methods of analysis are sensitive to the dimensionality d
- Our goal:
- Find a lower dimensional representation of data of dimension d' <d

Principal component analysis (PCA)

- Objective: We want to replace a high dimensional input with a small set of features (obtained by combining inputs)
- Different from the feature subset selection !!!
- PCA:
- A linear transformation of d dimensional input x to M dimensional feature vector z such that $M<d$ under which the retained variance is maximal.
- Equivalently it is the linear projection for which the sum of squares reconstruction cost is minimized.

PCA

4000

PCA

[^0]
Principal component analysis (PCA)

- PCA:
- linear transformation of dimensional input \mathbf{x} to M dimensional feature vector \mathbf{z} such that $M<d$ under which the retained variance is maximal.
- Task independent
- Fact:
- A vector \mathbf{x} can be represented using a set of orthonormal vectors \mathbf{u}

$$
\mathbf{x}=\sum_{i=1}^{d} z_{i} \mathbf{u}_{i}
$$

- Leads to transformation of coordinates (from \mathbf{x} to \mathbf{z} using u's)

$$
z_{i}=\mathbf{u}_{i}{ }^{T} \mathbf{x}
$$

PCA

- Idea: replace d coordinates with M of z_{i} coordinates to represent x. We want to find the subset M of basis vectors.

$$
\tilde{\mathbf{x}}=\sum_{i=1}^{M} z_{i} \mathbf{u}_{i}+\sum_{i=M+1}^{d} b_{i} \mathbf{u}_{i}
$$

b_{i} - constant and fixed

- How to choose the best set of basis vectors?
- We want the subset that gives the best approximation of data x in the dataset on average (we use least squares fit) Error for data entry $\mathbf{x}^{n} \quad \mathbf{x}^{n}-\tilde{\mathbf{x}}^{n}=\sum_{i=M+1}^{d}\left(z_{i}^{n}-b_{i}\right) \mathbf{u}_{i}$
Reconstruction error

$$
E_{M}=\frac{1}{2} \sum_{n=1}^{N}\left\|\mathbf{x}^{n}-\tilde{\mathbf{x}}^{n}\right\|=\frac{1}{2} \sum_{n=1}^{N} \sum_{i=M+1}^{d}\left(z_{i}^{n}-b_{i}\right)^{2}
$$

PCA

- Differentiate the error function with regard to all b_{i} and set equal to 0 we get:

$$
b_{i}=\frac{1}{N} \sum_{n=1}^{N} z_{i}^{n}=\mathbf{u}_{i}{ }^{T} \overline{\mathbf{x}} \quad \overline{\mathbf{x}}=\frac{1}{N} \sum_{n=1}^{N} \mathbf{x}^{n}
$$

- Then we can rewrite:

$$
E_{M}=\frac{1}{2} \sum_{i=M+1}^{d} \mathbf{u}_{i}{ }^{T} \boldsymbol{\Sigma} \mathbf{u}_{i} \quad \boldsymbol{\Sigma}=\sum_{n=1}^{N}\left(\mathbf{x}^{n}-\overline{\mathbf{x}}\right)\left(\mathbf{x}^{n}-\overline{\mathbf{x}}\right)^{T}
$$

- The error function is optimized when basis vectors satisfy:

$$
\Sigma \mathbf{u}_{i}=\lambda_{i} \mathbf{u}_{i} \quad E_{M}=\frac{1}{2} \sum_{i=M+1}^{d} \lambda_{i}
$$

The best \boldsymbol{M} basis vectors: discard vectors with $d-M$ smallest eigenvalues (or keep vectors with M largest eigenvalues)
Eigenvector \mathbf{u}_{i} - is called a principal component

PCA

- Once eigenvectors \mathbf{u}_{i} with largest eigenvalues are identified, they are used to transform the original d-dimensional data to M dimensions

- To find the "true" dimensionality of the data d ' we can just look at eigenvalues that contribute the most (small eigenvalues are disregarded)
- Problem: PCA is a linear method. The "true" dimensionality can be overestimated. There can be non-linear correlations.

Dimensionality reduction with neural nets

- PCA is limited to linear dimensionality reduction
- To do non-linear reductions we can use neural nets
- Auto-associative network: a neural network with the same inputs and outputs (\boldsymbol{x})

- The middle layer corresponds to the reduced dimensions

Dimensionality reduction with neural nets

- Error criterion:

$$
E=\frac{1}{2} \sum_{n=1}^{N} \sum_{i=1}^{d}\left(y_{i}\left(x^{n}\right)-x^{n}\right)^{2}
$$

- Error measure tries to recover the original data through limited number of dimensions in the middle layer
- Non-linearities modeled through intermediate layers between the middle layer and input/output
- If no intermediate layers are used the model replicates PCA optimization through learning

Multidimensional scaling

- Find a lower dimensional space projection such that the distances among data points are preserved
- Used in visualization - d-diminensional data transformed to 3D or 2D
- Dissimilarities before projection $\delta_{i, j}=\left\|x_{i}-x_{j}\right\|$
- Objective: Optimize points and their coordinates by fitting the dissimilarities afterwards
$\min _{\left\{x_{1}, x_{2}, \cdots x_{n}\right\}} \sum_{i<j}\left(\left\|x_{i}{ }^{\prime}-x_{j}{ }^{\prime}\right\|-\delta_{i j}\right)^{2}$

Other (unsupervised) methods

- Independent component analysis:
- Identify independent components/signals/sources in the original data
- Non-Gaussian signals

$$
\begin{aligned}
& \mathbf{x}=\mathbf{A s} \quad \mathrm{X} \text { is a linear combination of values for sources } \\
& \mathbf{s}=\mathbf{W} \mathbf{x}=\mathbf{A}^{-1} \mathbf{x}
\end{aligned}
$$

Dimensionality reduction through clustering

- Clustering algorithms

- group together "similar" instances in the data sample
- Dimensionality reduction based on clustering:
- Replace a high dimensional data entry with a cluster label
- Problem:
- Determistic clustering gives only one label per input
- May not be enough to represent the data for prediction
- Solutions:
- Clustering over subsets of input data
- Soft clustering (probability of a cluster is used directly)

Dimensionality reduction through clustering

- Soft clustering (e.g. mixture of Gaussians) attempts to cover all instances in the data sample with a small number of groups
- Each group is more or less responsible for a data entry (responsibility - a posterior of a group given the data entry)

Mixture of G. responsibility $\quad h_{i l}=\frac{\pi_{i} p\left(x_{l} \mid y_{l}=i\right)}{\sum_{u=1}^{k} \pi_{u} p\left(x_{l} \mid y_{l}=u\right)}$

- Dimensionality reduction based on soft clustering
- Replace a high dimensional data with the set of group posteriors
- Feed all posteriors to the learner e.g. linear regressor, classifier

Dimensionality reduction through clustering

- We can use the idea of soft clustering before applying regression/classification learning
- Two stage algorithms
- Learn the clustering
- Learn the classification
- Input clustering: \mathbf{x} (high dimensional)
- Output clustering (Input classifier): $p(c=i \mid \mathbf{x})$
- Output classifier: y
- Example: Networks with Radial Basis Functions (RBFs)
- Problem:
- Clustering learns based on $p(\mathbf{x})$ (disregards the target)
- Prediction based on $p(y \mid x)$

Networks with radial basis functions

- An alternative to multilayer NN for non-linearities
- Radial basis functions:

$$
f(x)=w_{0}+\sum_{j=1}^{k} w_{j} \phi_{j}(\mathbf{x})
$$

- Based on interpolations of prototype points (means)
- Affected by the distance between the \mathbf{x} and the mean
- Fit the outputs of basis functions through the linear model
- Choice of basis functions:

Gaussian

- Learning:

$$
\phi_{j}(x)=\exp \left\{\frac{\left\|x-\mu_{j}\right\|^{2}}{2 \sigma_{j}^{2}}\right\}
$$

- In practice seem to work OK for up to 10 dimensions
- For higher dimensions (ridge functions - logistic) combining multiple learners seem to do better job

[^0]: CS 2750 Machine Learning

