

Parameter estimation	
Other possible criteria:	
• Maximum a posterior	i probability (MAP)
maximize $p(\mathbf{\Theta} \mid D)$	$(0,\xi)$ (mode of the posterior)
- Yields: one set of pa	arameters Θ_{MAP}
- Approximation: $\hat{p}(\mathbf{X}) = p(\mathbf{X})$	$\mathbf{X} \mathbf{\Theta}_{MAP})$
• Expected value of the	parameter
$\hat{\mathbf{\Theta}} = E(\mathbf{\Theta})$	(mean of the posterior)
– Expectation taken w	with regard to posterior $p(\boldsymbol{\Theta} \mid D, \xi)$
- Yields: one set of pa	arameters
– Approximation:	
$\hat{p}(\mathbf{X}) = p(\mathbf{X})$	$\hat{\mathbf{G}}$

Example

Problem description:

- Disease: pneumonia
- Patient symptoms (findings, lab tests):
 - Fever, Cough, Paleness, WBC (white blood cells) count, Chest pain, etc.

Representation of a patient case:

• Symptoms and disease are represented as random variables

Our objectives:

- Describe a multivariate distribution representing the relations between symptoms and disease
- Design of inference and learning procedures for the multivariate model

CS 2750 Machine Learning

Conditional probability		
Conditional probability :		
Probability of A given B		
$P(A \mid B) = \frac{P(A, B)}{P(B)}$		
• Conditional probability is defined in terms of joint probabilities		
• Joint probabilities can be expressed in terms of conditional probabilities $P(A, B) = P(A B)P(B) \text{(product rule)}$		
$P(X_1, X_2, \dots, X_n) = \prod_{i=1}^n P(X_i \mid X_{1, \dots}, X_{i-1})$ (chain rule)		
 Conditional probability – is useful for various probabilistic inferences 		
P(Pneumonia = True Fever = True, WBCcount = high, Cough = True)		
CS 2750 Machine Learning		

