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SVMs for regression
Multilayer neural networks
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Linearly non-separable case

• Allow some flexibility on crossing the separating hyperplane
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Linearly non-separable case

• Rewrite                                                             in
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Support vector machines

• The decision boundary:

• The decision:

• (!!):

• Decision on a new x requires to compute  the inner product 
between the examples

• Similarly, the optimization depends on 
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Nonlinear case

• The linear case requires to compute
• The non-linear case can be handled by using a set of features. 

Essentially we map input vectors to (larger) feature vectors

• It is possible to use SVM formalism on feature vectors

• Kernel function

• Crucial idea: If we choose the kernel function wisely we can 
compute linear separation in the feature space implicitly such 
that we keep working in the original input space !!!!
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Kernel function example

• Assume                         and a feature mapping that maps the input 
into a quadratic feature set

• Kernel function for the feature space:

• The computation of the linear separation in the higher dimensional 
space is performed implicitly in the original input space
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Kernel trick

• Replace the inner product with a kernel

• A well chosen kernel leads to an efficient computation

Nonlinear extension

CS 2750 Machine Learning

Kernel functions

• Linear kernel

• Polynomial kernel

• Radial basis kernel
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Kernels

• Kernels define a similarity measure : 

– define a distance in between two objects 

• Design criteria: we want kernels to  be

– valid – Satisfy Mercer condition of positive semi-
definiteness

– good – embody the “true similarity” between objects

– appropriate – generalize well

– efficient – the computation of K(x,x’) is feasible

• NP-hard problems abound with graphs
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Kernels

• Research have proposed kernels for comparison of variety of 
objects:

– Strings

– Trees

– Graphs

• Cool thing:

– SVM algorithm can be now applied to classify a variety of 
objects 
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Regression = find a function that fits the data.

• A data point may be wrong due to the noise

Idea: Error from points which are close should count as a valid 
noise

• Line should be influenced by the real data not the noise.

Support vector machine for regression
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Linear model

• Training data:

• Our goal is to find a function f(x) that has at most ε deviation 
from the actually obtained target  for all the training data. 
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bbf  xw,xwx T)(

Linear model

Linear function:

We want a function that is:

• flat: means that one seeks small w

• all data points are within its ε neighborhood 

The problem can be formulated as a convex optimization 
problem:

All data points are assumed to be in the ε neighborhood 
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bbf  xw,xwx T)(

Linear model

• Real data: not all data points always fall into the ε 
neighborhood 

• Idea: penalize points that fall outside the ε neighborhood 
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bbf  xw,xwx T)(

Linear model

Linear function:

Idea: penalize points that fall outside the ε neighborhood
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ε-intensive loss function












otherwise    

 for              0
 








Linear model



9

CS 2750 Machine Learning

Lagrangian that solves the optimization problem

Optimization
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Maximize the dual
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Multilayer neural networks

Or another way of modeling nonlinearities
for regression and classification problems

CS 2750 Machine Learning

Classification with the linear model.   

Logistic regression model defines a linear decision boundary

• Example: 2 classes (blue and red points)
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Linear decision boundary

• logistic regression model is not optimal, but not that bad
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When logistic regression fails?

• Example in which the logistic regression model fails
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Limitations of linear units. 
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-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

• Logistic regression does not work for parity functions
- no linear decision boundary exists

Solution: a model of a non-linear decision boundary
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Extensions of simple linear units
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Learning with extended linear units
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Feature (basis) functions model nonlinearities

Important property:
• The same problem as learning of the weights for linear units , the 
input has changed– but the weights are linear in the new input
Problem: too many weights to learn
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Linear regression Logistic regression
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Multi-layered neural networks

• An alternative way to introduce nonlinearities to 
regression/classification models

• Key idea: Cascade several simple neural models with 
logistic units. Much like neuron connections.
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Multilayer neural network

Hidden layer Output layerInput layer

Cascades multiple logistic regression units

Also called a multilayer perceptron (MLP)
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Example: (2 layer) classifier with non-linear decision boundaries

CS 2750 Machine Learning

Multilayer neural network

• Models non-linearity through logistic regression units

• Can be applied to both regression and binary classification

problems 
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Multilayer neural network

• Non-linearities are modeled using multiple hidden logistic 
regression units (organized in layers)

• The output layer determines whether it is a regression or a 
binary classification problem
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Learning with MLP

• How to learn the parameters of the neural network?

• Gradient descent algorithm

– Weight updates based on the error:

• We need to compute gradients for weights in all units

• Can be computed in one backward sweep through the net !!!

• The process is called back-propagation
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Backpropagation
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Backpropagation
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Last unit (is the same as for the regular linear units):

It is the same for the classification with the log-likelihood
measure of fit and linear regression with least-squares error!!!
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Learning with MLP

• Gradient descent algorithm

– Weight update:
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Learning with MLP

• Online gradient descent algorithm

– Weight update:
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Online gradient descent algorithm for MLP

Online-gradient-descent (D, number of iterations)

Initialize all weights

for i=1:1: number of iterations

do      select a data point Du=<x,y> from D

set  learning rate 

compute outputs                for each unit

compute derivatives           via backpropagation 

update all weights (in parallel)

end for

return weights w
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Xor Example. 
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• linear decision boundary does not exist
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Xor example. Linear unit

CS 2750 Machine Learning

Xor example.  
Neural network with  2 hidden units
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Xor example. 
Neural network with 10 hidden units

CS 2750 Machine Learning

MLP in practice

• Optical character recognition – digits 20x20

– Automatic sorting of mails

– 5 layer network with multiple output functions

10 outputs (0,1,…9)

…

20x20 = 400  inputs

5          10                   3000

4        300                   1200

3       1200                50000

2         784                  3136

1        3136               78400

layer      Neurons        Weights


