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Linear decision boundaries

* What models define linear decision boundaries?
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Logistic regression model

* Model for binary (2 class) classification
* Defined by discriminant functions:

g,(x)=1/1+e™™)

go(x)=1-g,(x)=1/(1+e™")
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Logistic regression model. Decision boundary

* Logistic regression model defines a linear decision boundary

wix+w,=0

Example: 2 classes (blue and red points)

CS 1571 Introduction to AI

Linear discriminant analysis (LDA)
* When covariances are the same  x ~ N (p 0nX2),y=0
x~N(p,,X),y=1
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Linear decision boundaries

* Any other models/algorithms?
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Fisher linear discriminant

* Project data into one dimension

Decision:

y=w'x

y=wa+W020

» How to find the projection line?
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Fisher linear discriminant

How to find the projection line?
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Fisher linear discriminant

N,
Assume: 1 & 1
mo=——3x, M= DX
N1 icc. 2 ieC,

Maximize the difference in projected means:

m, —m, =WT(m2_m1)
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Fisher linear discriminant

Problem1: m,-m, =w'(m,—m,) canbe maximized
by increasing w

Problem 2: variance in class distributions after projection is

changed

4

mz B m1
s; +5s;

eiq . . 2 2
Within class variance S = Z (y; —my)
ieCy

Fisher’s solution: J(w) =
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Fisher linear discriminant

Error: m,—-m
J(w)y=—"F—7-
S, +5S,
Within class variance after the projection
S, = Z (yi —my)’
ieCy

Optimal solution:

-1
W= Sw (m2 _ml)

Sw = Z (Xi _ml)(xi _ml)T

ieC;

+ Z (X, —m,)(x; —m,)’

ieC,
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Linearly separable classes

Linearly separable classes:
There is a hyperplane w'x+w, =0

that separates training instances with no error

Class (+1) °

wix+w, >0 u °
Class (-1) "a ®
wix+w, <0 "
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Learning linearly separable sets

Finding weights for linearly
separable classes:

* Linear program (LP) solution
+ It finds weights that satisfy

the following constraints: ]
wix, +w,>0 For all i, such that Yy; = +1
WX, +W, <0 For all i, such that Y; = —1
Together: y,(wix, +w,)>0

Property: if there is a hyperplane separating the examples, the
linear program finds the solution

CS 2750 Machine Learning




Optimal separating hyperplane

* Problem:
» There are multiple hyperplanes that separate the data points
*  Which one to choose?
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Optimal separating hyperplane

* Problem: multiple hyperplanes that separate the data exists
— Which one to choose?
¢ Maximum margin choice: maximum distance of d, +d_

— where d, is the shortest distance of a positive example
from the hyperplane (similarly d_ for negative examples)
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Maximum margin hyperplane

 For the maximum margin hyperplane only examples on the
margin matter (only these affect the distances)

» These are called support vectors
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Finding maximum margin hyperplanes

« Assume that examples in the training set are (X;,Y;) such
that Yy, € {+1,-1}
» Assume that all data satisfy:

wix, +w,>1 for y;=+1

wix, +w, <-1 for y;,=-1

» The inequalities can be combined as:

yi(wai +W,)—-1>20 for all i

» Equalities define two hyperplanes:

wix, +w, =1 wix, +w, =-1
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Finding the maximum margin hyperplane

» Geometrical margin: p, , (X,¥)=Yy(W' x+Ww,)/|w]_,
— measures the distance of a point x from the hyperplane

W - normal to the hyperplane ||||L , - Euclidean norm
w For points satisfying:
y (w'x, +W,)-1=0
@ ® 1
= e o The distance i1s 7
m o o ® ” ” L2
Uy ® o ° Width of the margin:
u d+ + d_ — L
| “W ||L2
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Maximum margin hyperplane

.. 2
+ We want to maximized, +d_=-——

[wll..
* We do it by minimizing
W], /2=w"w/2
w,W, - variables

— But we also need to enforce the constraints on points:

[yi(WTX+ WO)—I]Z 0
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Maximum margin hyperplane

* Solution: Incorporate constraints into the optimization
* Optimization problem (Lagrangian)

Iowowy.a) = WP 2= e[y v x4 wy) 1]
a; 20 - Lagran:gels multipliers
* Minimize with respectto W, W, (primal variables)
» Maximize with respectto a (dual variables)
What happens to a:
if y(wx+w,)-1>0= a, >0
else — a; >0

Active constraint
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Max margin hyperplane solution

 Set derivatives to 0 (Kuhn;Tucker conditions)
V., J(w,w,,a)=w - z oYX, = 0

i=1

oJ (w, Wo,a)
—_— =0
) S ay

* Now we need to solve for Lagrange parameters (Wolfe dual)

@)=Y a -5 ey, (x/x,) €= maximize

i=1 i,j=1

Subject to constraints

a, 20 foralli, and Y a;y; =0

Quadratic optimization problem: solution ¢, for all i
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Maximum margin solution

* The resulting parameter vector w can be expressed as:

n
LEDIABS @, is the solution of the optimization
i=1

* The parameter w, is obtained from a [yi (WX; +W,)— 1] =0

Solution properties
« a; =0 forall points that are
not on the margin

* The decision boundary:

WiX+Ww, = Z:dziyi(xiTx)JrWO =0
iesvV

The decision boundary defined by support vectors only
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Support vector machines

* The decision boundary:

W' X+ W, = Za?iyi(xiTx)+ w,
ieSV

e (lassification decision:

y= Sign{zdiyi(XiTX)‘FWo}

ieSV
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Support vector machines

* The decision boundary:

AT A
WiX+W, = Zaiyi+wo
ieSV

e C(lassification decision:

= sign[z o?iy+w0}
. (!!): ieSV

* Decision on a new x depends on the inner product between
two examples (xiT X)
* Similarly, the optimization depends on (xiT X;)

n 1 n
ey = ‘zz“i“jyiyj
i=1 i,j=1
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Extension to a linearly non-separable case

» Idea: Allow some flexibility on crossing the separating
hyperplane

CS 2750 Machine Learning
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Extension to the linearly non-separable case

» Relax constraints with variables E>0

wix, +w, >1-¢& for y; =+1

wix, +w, <—1+¢& for y; =-1

n
* Error occurs if & 21, Z &i is the upper bound on the
number of errors =

* Introduce a penalty for the errors
n
2
minimize ”W” /2+C Z Si
i=1
Subject to constraints

C —set by a user, larger C leads to a larger penalty for an error
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Extension to linearly non-separable case

» Lagrange multiplier form (primal problem)

‘J(W’WODa):||w||2/2+CZ§i _zai[yi(wa+WO)_1+‘§i]_Z#i‘§i

= = =

* Dual form after w,w, are expressed ( £, s cancel out)
n 1 n

J(a)zZai _Ezaiajyiyj'(xiij)
i1

i,j=1 )
Subjectto: 0 <, <C foralli, and Z ay; =0
n i=1
Solution: W = Z a.,y,x,
i=1

The difference from the separable case: 0<a,<C

The parameter W, is obtained through KKT conditions
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Support vector machines

The decision boundary:

AT A
WiX+Ww, = Zaiyi-l-WO
ieSV

The decision:

= sign[Zo?iy+w0}
(!!): ieSV

Decision on a new x requires to compute the inner product
between the examples (x iT X)

Similarly, the optimization depends on  (x,"x ;)

n 1 n
ey =2 ‘zzai“jyiyj
i=1 i,j=1
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Nonlinear case

The linear case requires to compute (x iT X)

The non-linear case can be handled by using a set of features.
Essentially we map input vectors to (larger) feature vectors

X = ()
It is possible to use SVM formalism on feature vectors

P(x)" o(x")
Kernel function

K(xx")=9(x) o(x)

Crucial idea: If we choose the kernel function wisely we can
compute linear separation in the feature space implicitly such
that we keep working in the original input space !!!!

CS 2750 Machine Learning
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Kernel function example

+ Assume x =[X,,X,]" and a feature mapping that maps the input
into a quadratic feature set

X = @(x) :[xf,xj,\/fxlxz,\/fxl,\/fxz,lf

» Kernel function for the feature space:

K(x',x)=o(x") o(x)

XEXTHX XD 2K, X, X' X', 42X, X' +2X, X', +1
= (X, X', +X, X', +1)?
=(1+(x"x")’

* The computation of the linear separation in the higher dimensional
space is performed implicitly in the original input space
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Kernel function example

. e Linear separator
@ .
. o in the feature space
|
Non-linear separator
u o in the input space
[ ° d
| ® 5 °
™ |
m " g
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Kernel functions

Linear kernel

K(x,x')=x"x'

Polynomial kernel
K(x,x') = [1 + XTX'] X
Radial basis kernel

K(x,x") =exp {— %”x - x'||2}
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Kernels

Kernels can be defined for more complex objects:

— Strings
— Graphs
— Images

Kernel — similarity between pairs of objects
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