CS 2750 Machine Learning Lecture 10

Support vector machines

Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square

CS 2750 Machine Learning

Outline

Outline:

- Fisher Linear Discriminant
- Algorithms for linear decision boundary
- Support vector machines
- Maximum margin hyperplane.
- Support vectors.
- Support vector machines.
- Extensions to the non-separable case.
- Kernel functions.

Linear decision boundaries

• What models define linear decision boundaries?

CS 2750 Machine Learning

Logistic regression model

- Model for binary (2 class) classification
- Defined by discriminant functions:

$$g_1(\mathbf{x}) = 1/(1 + e^{-\mathbf{w}^T \mathbf{x}})$$
 $g_0(\mathbf{x}) = 1 - g_1(\mathbf{x}) = 1/(1 + e^{-\mathbf{w}^T \mathbf{x}})$

Logistic regression model. Decision boundary

• Logistic regression model defines a linear decision boundary

 $\mathbf{w}^T\mathbf{x} + w_0 = 0$

Example: 2 classes (blue and red points)

CS 1571 Introduction to AI

Linear discriminant analysis (LDA)

- When covariances are the same $\mathbf{x} \sim N(\boldsymbol{\mu}_0, \boldsymbol{\Sigma}), \ y = 0$
 - $\mathbf{x} \sim N(\boldsymbol{\mu}_1, \boldsymbol{\Sigma}), \ y = 1$

Linear decision boundaries

• Any other models/algorithms?

CS 2750 Machine Learning

Fisher linear discriminant

• Project data into one dimension

$$y = \mathbf{w}^T \mathbf{x}$$

Decision:

$$y = \mathbf{w}^T \mathbf{x} + w_0 \ge 0$$

• How to find the projection line?

Fisher linear discriminant

How to find the projection line?

$$y = \mathbf{w}^T \mathbf{x}$$

CS 2750 Machine Learning

Fisher linear discriminant

Assume:

$$\mathbf{m}_{1} = \frac{1}{N_{1}} \sum_{i \in C_{1}}^{N_{1}} \mathbf{x}_{i}$$
 $\mathbf{m}_{2} = \frac{1}{N_{2}} \sum_{i \in C_{2}}^{N_{2}} \mathbf{x}_{i}$

Maximize the difference in projected means:

$$m_2 - m_1 = \mathbf{w}^T (\mathbf{m}_2 - \mathbf{m}_1)$$

Fisher linear discriminant

- **Problem 1:** $m_2 m_1 = \mathbf{w}^T (\mathbf{m}_2 \mathbf{m}_1)$ can be maximized by increasing \mathbf{w}
- **Problem 2:** variance in class distributions after projection is

changed

Fisher's solution:

$$J(\mathbf{w}) = \frac{m_2 - m_1}{s_1^2 + s_2^2}$$

Within class variance

$$s_k^2 = \sum_{i \in C_k} (y_i - m_k)^2$$

CS 2750 Machine Learning

Fisher linear discriminant

Error:

$$J(\mathbf{w}) = \frac{m_2 - m_1}{s_1^2 + s_2^2}$$

Within class variance after the projection

$$s_k^2 = \sum_{i \in C_k} (y_i - m_k)^2$$

Optimal solution:

$$\mathbf{w} \approx \mathbf{S}_{\mathbf{w}}^{-1} (\mathbf{m}_{2} - \mathbf{m}_{1})$$

$$\mathbf{S}_{\mathbf{w}} = \sum_{i \in C_{1}} (\mathbf{x}_{i} - \mathbf{m}_{1}) (\mathbf{x}_{i} - \mathbf{m}_{1})^{T}$$

$$+ \sum_{i \in C_{2}} (\mathbf{x}_{i} - \mathbf{m}_{2}) (\mathbf{x}_{i} - \mathbf{m}_{2})^{T}$$

Linearly separable classes

Linearly separable classes:

There is a **hyperplane** $\mathbf{w}^T \mathbf{x} + w_0 = 0$ that separates training instances with no error

CS 2750 Machine Learning

Learning linearly separable sets

Finding weights for linearly separable classes:

- Linear program (LP) solution
- It finds weights that satisfy the following constraints:

$$\mathbf{w}^T \mathbf{x}_i + w_0 \ge 0$$
 For all i, such that $y_i = +1$

$$\mathbf{w}^T \mathbf{x}_i + w_0 \le 0$$
 For all i, such that $y_i = -1$

Together:
$$y_i(\mathbf{w}^T\mathbf{x}_i + w_0) \ge 0$$

Property: if there is a hyperplane separating the examples, the linear program finds the solution

Optimal separating hyperplane

- Problem:
- There are multiple hyperplanes that separate the data points
- Which one to choose?

CS 2750 Machine Learning

Optimal separating hyperplane

- Problem: multiple hyperplanes that separate the data exists
 - Which one to choose?
- Maximum margin choice: maximum distance of $d_+ + d_-$
 - where d_+ is the shortest distance of a positive example from the hyperplane (similarly d_- for negative examples)

Maximum margin hyperplane

- For the maximum margin hyperplane only examples on the margin matter (only these affect the distances)
- These are called **support vectors**

CS 2750 Machine Learning

Finding maximum margin hyperplanes

- Assume that examples in the training set are (\mathbf{x}_i, y_i) such $y_i \in \{+1,-1\}$
- **Assume** that all data satisfy:

$$\mathbf{w}^T \mathbf{x}_i + w_0 \ge 1$$

$$\mathbf{w}^T \mathbf{x}_i + w_0 \ge 1 \qquad \text{for} \qquad y_i = +1$$

$$\mathbf{w}^T \mathbf{x}_i + w_0 \le -1 \qquad \text{for} \qquad y_i = -1$$

for
$$y_i = -1$$

• The inequalities can be combined as:

$$y_i(\mathbf{w}^T\mathbf{x}_i + w_0) - 1 \ge 0$$
 for all i

• Equalities define two hyperplanes:

$$\mathbf{w}^T \mathbf{x}_i + w_0 = 1 \qquad \qquad \mathbf{w}^T \mathbf{x}_i + w_0 = -1$$

$$\mathbf{w}^T \mathbf{x}_i + w_0 = -1$$

Finding the maximum margin hyperplane

- Geometrical margin: $\rho_{\mathbf{w},w_0}(\mathbf{x},y) = y(\mathbf{w}^T\mathbf{x} + w_0) / \|\mathbf{w}\|_{L^2}$
 - measures the distance of a point \mathbf{x} from the hyperplane \mathbf{w} normal to the hyperplane $\|..\|_{L^2}$ Euclidean norm

For points satisfying:

$$y_i(\mathbf{w}^T\mathbf{x}_i + w_0) - 1 = 0$$

The distance is $\frac{1}{\|\mathbf{w}\|_{L^2}}$

Width of the margin:

$$d_{+} + d_{-} = \frac{2}{\left\|\mathbf{w}\right\|_{L^{2}}}$$

CS 2750 Machine Learning

Maximum margin hyperplane

- We want to maximize $d_+ + d_- = \frac{2}{\|\mathbf{w}\|_{L^2}}$
- We do it by **minimizing**

$$\|\mathbf{w}\|_{L^2}^2 / 2 = \mathbf{w}^T \mathbf{w} / 2$$

 \mathbf{w}, w_0 - variables

- But we also need to enforce the constraints on points:

$$\left[y_i(\mathbf{w}^T\mathbf{x} + w_0) - 1 \right] \ge 0$$

Maximum margin hyperplane

- Solution: Incorporate constraints into the optimization
- Optimization problem (Lagrangian)

$$J(\mathbf{w}, w_0, \alpha) = \|\mathbf{w}\|^2 / 2 - \sum_{i=1}^n \alpha_i \left[y_i(\mathbf{w}^T \mathbf{x} + w_0) - 1 \right]$$

 $\alpha_i \ge 0$ - Lagrange multipliers

- Minimize with respect to \mathbf{w}, w_0 (primal variables)
- Maximize with respect to α (dual variables)

What happens to α :

if
$$y_i(\mathbf{w}^T\mathbf{x} + w_0) - 1 > 0 \Longrightarrow \alpha_i \to 0$$

else $\Longrightarrow \alpha_i > 0$

Active constraint

CS 2750 Machine Learning

Max margin hyperplane solution

• Set derivatives to 0 (Kuhn-Tucker conditions)

$$\nabla_{\mathbf{w}} J(\mathbf{w}, w_0, \alpha) = \mathbf{w} - \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i = \overline{0}$$

$$\frac{\partial J(\mathbf{w}, w_0, \alpha)}{\partial w_0} = -\sum_{i=1}^n \alpha_i y_i = 0$$

• Now we need to solve for Lagrange parameters (Wolfe dual)

$$J(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j (\mathbf{x}_i^T \mathbf{x}_j) \iff \text{maximize}$$

Subject to constraints

$$\alpha_i \ge 0$$
 for all i , and $\sum_{i=1}^n \alpha_i y_i = 0$

• Quadratic optimization problem: solution \hat{a}_i for all i

Maximum margin solution

- The resulting parameter vector $\hat{\mathbf{w}}$ can be expressed as:

 $\hat{\mathbf{w}} = \sum_{i=1}^{n} \hat{\alpha}_{i} y_{i} \mathbf{x}_{i} \qquad \hat{\alpha}_{i} \text{ is the solution of the optimization}$

• The parameter w_0 is obtained from $\hat{\alpha}_i [y_i (\hat{\mathbf{w}} \mathbf{x}_i + w_0) - 1] = 0$

Solution properties

- $\hat{\alpha}_i = 0$ for all points that are not on the margin
- The decision boundary:

$$\hat{\mathbf{w}}^T \mathbf{x} + w_0 = \sum_{i \in SV} \hat{\alpha}_i y_i (\mathbf{x}_i^T \mathbf{x}) + w_0 = 0$$

The decision boundary defined by support vectors only

CS 2750 Machine Learning

Support vector machines

• The decision boundary:

$$\hat{\mathbf{w}}^T \mathbf{x} + w_0 = \sum_{i \in SV} \hat{\alpha}_i y_i(\mathbf{x}_i^T \mathbf{x}) + w_0$$

• Classification decision:

$$\hat{\mathbf{y}} = \operatorname{sign} \left[\sum_{i \in SV} \hat{\alpha}_i y_i(\mathbf{x}_i^T \mathbf{x}) + w_0 \right]$$

Support vector machines

• The decision boundary:

$$\hat{\mathbf{w}}^T \mathbf{x} + w_0 = \sum_{i \in SV} \hat{\alpha}_i y_i (\mathbf{x}_i^T \mathbf{x}) + w_0$$

• Classification decision:

$$\hat{y} = \text{sign} \left[\sum_{i \in SV} \hat{\alpha}_i y (\mathbf{x}_i^T \mathbf{x}) + w_0 \right]$$

- · (!!):
- Decision on a new \mathbf{x} depends on the inner product between two examples $(\mathbf{x}_i^T \mathbf{x})$
- Similarly, the optimization depends on $(\mathbf{x}_i^T \mathbf{x}_j)$

$$J(\alpha) = \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} (\mathbf{x}_{i}^{T} \mathbf{x}_{j})$$

CS 2750 Machine Learning

Extension to a linearly non-separable case

• **Idea:** Allow some flexibility on crossing the separating hyperplane

Extension to the linearly non-separable case

• Relax constraints with variables $\xi_i \ge 0$

$$\mathbf{w}^T \mathbf{x}_i + w_0 \ge 1 - \xi_i \quad \text{for} \qquad y_i = +1$$

$$\mathbf{w}^T \mathbf{x}_i + w_0 \le -1 + \xi_i \quad \text{for} \qquad \qquad \mathbf{y}_i = -1$$

- Error occurs if $\xi_i \ge 1$, $\sum_{i=1}^n \xi_i$ is the upper bound on the number of errors
- Introduce a penalty for the errors

minimize
$$\|\mathbf{w}\|^2 / 2 + C \sum_{i=1}^n \xi_i$$

Subject to constraints

C – set by a user, larger C leads to a larger penalty for an error

CS 2750 Machine Learning

Extension to linearly non-separable case

• Lagrange multiplier form (primal problem)

$$J(\mathbf{w}, w_0, \alpha) = \|\mathbf{w}\|^2 / 2 + C \sum_{i=1}^{n} \xi_i - \sum_{i=1}^{n} \alpha_i \left[y_i (\mathbf{w}^T \mathbf{x} + w_0) - 1 + \xi_i \right] - \sum_{i=1}^{n} \mu_i \xi_i$$

• Dual form after \mathbf{w}, w_0 are expressed (ξ_i s cancel out)

$$J(\alpha) = \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} (\mathbf{x}_{i}^{T} \mathbf{x}_{j})$$

Subject to: $0 \le \alpha_i \le C$ for all i, and $\sum_{i=1}^n \alpha_i y_i = 0$

Solution: $\hat{\mathbf{w}} = \sum_{i=1}^{n} \hat{\alpha}_{i} y_{i} \mathbf{x}_{i}$

The difference from the separable case: $0 \le \alpha_i \le C$

The parameter w_0 is obtained through KKT conditions

Support vector machines

• The decision boundary:

$$\hat{\mathbf{w}}^T \mathbf{x} + w_0 = \sum_{i \in SV} \hat{\alpha}_i y_i (\mathbf{x}_i^T \mathbf{x}) + w_0$$

• The decision:

$$\hat{y} = \operatorname{sign}\left[\sum_{i \in SV} \hat{\alpha}_i y \left(\mathbf{x}_i^T \mathbf{x}\right) + w_0\right]$$

- · (!!):
- Decision on a new \mathbf{x} requires to compute the inner product between the examples $(\mathbf{x}_i^T \mathbf{x})$
- Similarly, the optimization depends on $(\mathbf{x}_i^T \mathbf{x}_i)$

$$J(\alpha) = \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \left(\mathbf{x}_{i}^{T} \mathbf{x}_{j} \right)$$

CS 2750 Machine Learning

Nonlinear case

- The linear case requires to compute $(\mathbf{x}_i^T \mathbf{x})$
- The non-linear case can be handled by using a set of features. Essentially we map input vectors to (larger) feature vectors

$$x \to \varphi(x)$$

• It is possible to use SVM formalism on feature vectors

$$\varphi(\mathbf{x})^T \varphi(\mathbf{x}')$$

Kernel function

$$K(\mathbf{x}, \mathbf{x}') = \boldsymbol{\varphi}(\mathbf{x})^T \boldsymbol{\varphi}(\mathbf{x}')$$

• Crucial idea: If we choose the kernel function wisely we can compute linear separation in the feature space implicitly such that we keep working in the original input space !!!!

Kernel function example

• Assume $\mathbf{x} = [x_1, x_2]^T$ and a feature mapping that maps the input into a quadratic feature set

$$\mathbf{x} \to \mathbf{\phi}(\mathbf{x}) = [x_1^2, x_2^2, \sqrt{2}x_1x_2, \sqrt{2}x_1, \sqrt{2}x_2, 1]^T$$

• Kernel function for the feature space:

$$K(\mathbf{x'}, \mathbf{x}) = \mathbf{\phi}(\mathbf{x'})^{T} \mathbf{\phi}(\mathbf{x})$$

$$= x_{1}^{2} x_{1}^{2} + x_{2}^{2} x_{2}^{2} + 2x_{1} x_{2} x_{1}^{\prime} x_{2}^{\prime} + 2x_{1} x_{1}^{\prime} + 2x_{2} x_{2}^{\prime} + 1$$

$$= (x_{1} x_{1}^{\prime} + x_{2} x_{2}^{\prime} + 1)^{2}$$

$$= (1 + (\mathbf{x}^{T} \mathbf{x'}))^{2}$$

• The computation of the linear separation in the higher dimensional space is performed implicitly in the original input space

Kernel functions

Linear kernel

$$K(\mathbf{x}, \mathbf{x}') = \mathbf{x}^T \mathbf{x}'$$

• Polynomial kernel

$$K(\mathbf{x}, \mathbf{x}') = \left[1 + \mathbf{x}^T \mathbf{x}'\right]^k$$

• Radial basis kernel

$$K(\mathbf{x}, \mathbf{x}') = \exp\left[-\frac{1}{2}\|\mathbf{x} - \mathbf{x}'\|^2\right]$$

CS 2750 Machine Learning

Kernels

- Kernels can be defined for more complex objects:
 - Strings
 - Graphs
 - Images
- Kernel similarity between pairs of objects