CS 2750 Machine Learning Lecture 23

Reinforcement learning II

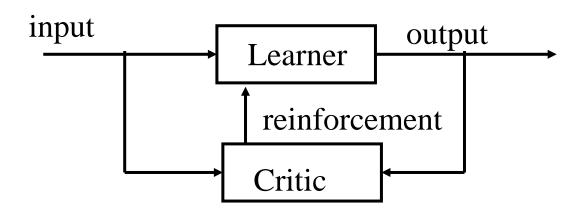
Milos Hauskrecht

milos@cs.pitt.edu

5329 Sennott Square

Reinforcement learning

- We want to learn the control policy: $\pi: X \to A$
- We see examples of \mathbf{x} (but outputs a are not given)
- Instead of a we get a feedback (reinforcement, reward) from a **critic** quantifying how good the selected output was



- The reinforcements may not be deterministic
- Goal: find $\pi: X \to A$ with the best expected reinforcements

Gambling example.

- Game: 3 different biased coins are tossed
 - The coin to be tossed is selected randomly from the three options and I always see which coin I am going to play next
 - I make bets on head or tail and I always wage \$1
 - If I win I get \$1, otherwise I lose my bet
- RL model:
 - **Input:** X a coin chosen for the next toss,
 - Action: A choice of head or tail,
 - **Reinforcements:** {1, -1}
- A policy $\pi: X \to A$

Example:
$$\pi$$
: Coin1 \rightarrow head Coin2 \rightarrow tail Coin3 \rightarrow head

Gambling example

• RL model:

- **Input:** X a coin chosen for the next toss,
- Action: A choice of head or tail,
- **Reinforcements:** {1, -1}
- A policy π : | Coin1 \rightarrow head | Coin2 \rightarrow tail | Coin3 \rightarrow head |
- Learning goal: find $\pi: X \to A$ $\pi: \begin{bmatrix} \text{Coin1} \to ? \\ \text{Coin2} \to ? \\ \text{Coin3} \to ? \end{bmatrix}$

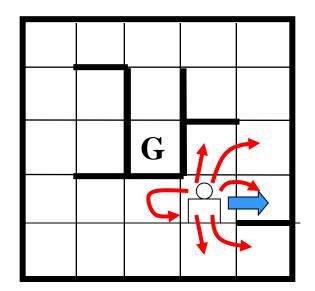
maximizing future expected profits

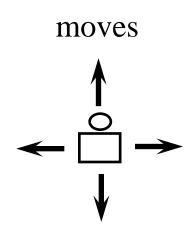
$$E(\sum_{t=0}^{\infty} \gamma^t r_t)$$
 γ a discount factor = present value of money

Agent navigation example.

Agent navigation in the Maze:

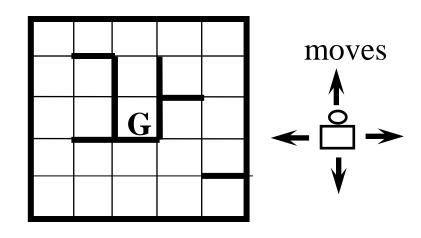
- 4 moves in compass directions
- Effects of moves are stochastic we may wind up in other than intended location with non-zero probability
- Objective: reach the goal state in the shortest expected time





Agent navigation example

- The RL model:
 - Input: X position of an agent
 - Output: A –a move
 - Reinforcements: R
 - -1 for each move
 - +100 for reaching the goal
 - A policy: $\pi: X \to A$



 $\begin{array}{c|c} \pi: & \text{Position } 1 \longrightarrow \textit{right} \\ & \text{Position } 2 \longrightarrow \textit{right} \\ & \dots \\ & \text{Position } 20 \longrightarrow \textit{left} \end{array}$

Goal: find the policy maximizing future expected rewards

$$E(\sum_{t=0}^{\infty} \gamma^{t} r_{t})$$

Objectives of RL learning

• Objective:

Find a mapping
$$\pi^*: X \to A$$

That maximizes some combination of future reinforcements (rewards) received over time

- Valuation models (quantify how good the mapping is):
 - Finite horizon model

$$E(\sum_{t=0}^{T} r_t)$$
 Time horizon: $T > 0$

Infinite horizon discounted model

$$E(\sum_{t=0}^{\infty} \gamma^t r_t)$$
 Discount factor: $0 < \gamma < 1$

Average reward

$$\lim_{T\to\infty}\frac{1}{T}E(\sum_{t=0}^T r_t)$$

RL with immediate rewards

Expected reward

$$E(\sum_{t=0}^{\infty} \gamma^{t} r_{t}) = E(r_{0}) + E(\gamma r_{1}) + E(\gamma^{2} r_{2}) + \dots$$

Optimizing the expected reward

$$\max_{\pi} E(\sum_{t=0}^{\infty} \gamma^{t} r_{t}) = \max_{\pi} \sum_{t=0}^{\infty} \gamma^{t} E(r_{t}) = \max_{\pi} \sum_{t=0}^{\infty} \gamma^{t} R(\pi) = \max_{\pi} R(\pi)(\sum_{t=0}^{\infty} \gamma^{t})$$

$$= (\sum_{t=0}^{\infty} \gamma^{t}) \max_{\pi} R(\pi)$$

$$\max_{\pi} R(\pi) = \max_{\pi} \sum_{x} R(\mathbf{x}, \pi(\mathbf{x})) P(\mathbf{x}) = \sum_{x} P(\mathbf{x}) [\max_{\pi(\mathbf{x})} R(\mathbf{x}, \pi(\mathbf{x}))]$$

Optimal strategy:
$$\pi^*: X \to A$$

$$\pi^*(\mathbf{x}) = \arg \max R(\mathbf{x}, a)$$

RL with immediate rewards

- Problem: In the RL framework we do not know $R(\mathbf{x}, a)$
 - The expected reward for performing action a at input x

• Solution:

- For each input x try different actions a
- Estimate $R(\mathbf{x}, a)$ using the average of observed rewards

$$\widetilde{R}(\mathbf{x},a) = \frac{1}{N_{x,a}} \sum_{i=1}^{N_{x,a}} r_i^{x,a}$$

- Action choice $\pi(\mathbf{x}) = \arg \max \widetilde{R}(\mathbf{x}, a)$
- Accuracy of the estimate: statistics (Hoeffding's bound)

$$P(|\widetilde{R}(\mathbf{x}, a) - R(\mathbf{x}, a)| \ge \varepsilon) \le \exp\left| -\frac{2\varepsilon^2 N_{x, a}}{(r_{\text{max}} - r_{\text{min}})^2} \right| \le \delta$$

- Number of samples:
$$N_{x,y} \ge \frac{(r_{\text{max}} - r_{\text{min}})^2}{2\varepsilon^2} \ln \frac{1}{\delta}$$

RL with immediate rewards

- On-line (stochastic approximation)
 - An alternative way to estimate $R(\mathbf{x}, a)$
- Idea:
 - choose action a for input x and observe a reward $r^{x,a}$
 - Update an estimate

$$\widetilde{R}(\mathbf{x}, a) \leftarrow (1 - \alpha)\widetilde{R}(\mathbf{x}, a) + \alpha r^{x, a}$$

 α - a learning rate

- Convergence property: The approximation converges in the limit for an appropriate learning rate schedule.
- Assume: $\alpha(n(x,a))$ is a learning rate for *n*th trial of (x,a) pair
- Then the converge is assured if:

1.
$$\sum_{i=1}^{\infty} \alpha(i) = \infty$$
 2.
$$\sum_{i=1}^{\infty} \alpha(i)^{2} < \infty$$

Exploration vs. Exploitation

Uniform exploration

- Choose the "current" best choice with probability $1 - \varepsilon$ $\hat{\pi}(\mathbf{x}) = \arg\max \widetilde{R}(\mathbf{x}, a)$

- All other choices are selected with a uniform probability

$$p(a \mid x) = \frac{\mathcal{E}}{|A| - 1}$$

Boltzman exploration

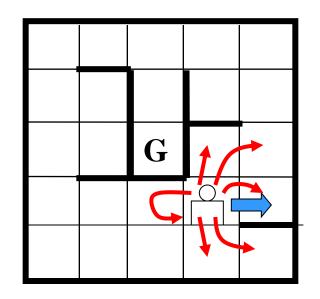
 The action is chosen randomly but proportionally to its current expected reward estimate

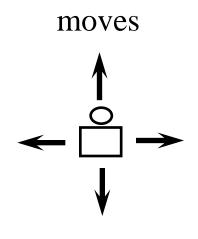
$$p(a \mid \mathbf{x}) = \frac{\exp\left[\widetilde{R}(x, a)/T\right]}{\sum_{a' \in A} \exp\left[\widetilde{R}(x, a')/T\right]}$$

T – is temperature parameter. What does it do?

RL with delayed rewards

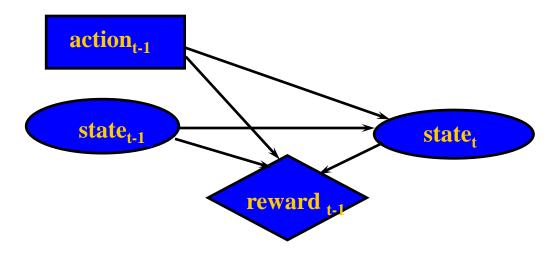
- Agent navigation in the Maze:
 - 4 moves in compass directions
 - Effects of moves are stochastic we may wind up in other than intended location with non-zero probability
 - Objective: reach the goal state in the shortest time



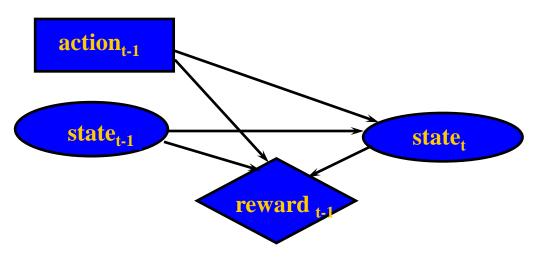


Learning with delayed rewards

- Actions, in addition to immediate rewards affect the next state of the environment and thus indirectly also future rewards
- We need a model to represent environment changes
- The model we use is called **Markov decision process (MDP)**
 - Frequently used in AI, OR, control theory
 - Markov assumption: next state depends on the previous state and action, and not states (actions) in the past



Markov decision process



Formal definition:

4-tuple (S, A, T, R)

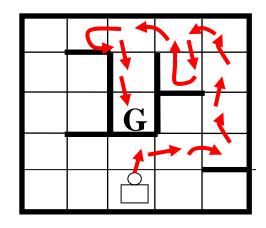
• A set of states S (X)	locations of a robot
• A set of actions A	move actions
• Transition model $S \times A \times S \rightarrow [0,1]$	where can I get with different moves
• Reward model $S \times A \times S \rightarrow \Re$	reward/cost
	for a transition

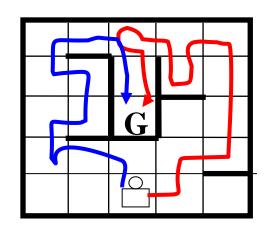
MDP problem

- We want to find the best policy $\pi^*: S \to A$
- Value function (V) for a policy, quantifies the goodness of a policy through, e.g. infinite horizon, discounted model

$$E(\sum_{t=0}^{\infty} \gamma^t r_t)$$

- It: 1. combines future rewards over a trajectory
 - 2. combines rewards for multiple trajectories (through expectation-based measures)





Value of a policy for MDP

- Assume a fixed policy $\pi: S \to A$
- How to compute the value of a policy under infinite horizon discounted model?

Fixed point equation:

$$V^{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s' \in S} P(s'|s, \pi(s)) V^{\pi}(s')$$

expected one step reward for the first action

expected discounted reward for following the policy for the rest of the steps

$$\mathbf{v} = \mathbf{r} + \mathbf{U}\mathbf{v}$$
 $\mathbf{v} = (\mathbf{I} - \mathbf{U})^{-1}\mathbf{r}$

- For a finite state space- we get a set of linear equations

Optimal policy

The value of the optimal policy

$$V^*(s) = \max_{a \in A} \left[R(s,a) + \gamma \sum_{s' \in S} P(s'|s,a) V^*(s') \right]$$

expected one step

expected discounted reward for following reward for the first action the opt. policy for the rest of the steps

Value function mapping form:

$$V^*(s) = (HV^*)(s)$$

The optimal policy:
$$\pi^*: S \to A$$

$$\pi^*(s) = \underset{a \in A}{\operatorname{arg\,max}} \left[R(s,a) + \gamma \sum_{s' \in S} P(s'|s,a) V^*(s') \right]$$

Computing optimal policy

Dynamic programming. Value iteration:

- computes the optimal value function first then the policy
- iterative approximation
- converges to the optimal value function

```
Value iteration (\varepsilon)
initialize \mathbf{V} ;; V is vector of values for all states
repeat
\mathbf{set} \quad \mathbf{V'} \leftarrow \mathbf{V}
\mathbf{set} \quad \mathbf{V} \leftarrow \mathbf{HV}
until \|\mathbf{V'} - \mathbf{V}\|_{\infty} \le \varepsilon
output \pi^*(s) = \underset{a \in A}{\operatorname{arg max}} \left[ R(s, a) + \gamma \sum_{s' \in S} P(s' | s, a) V(s') \right]
```

Reinforcement learning of optimal policies

- In the RL framework we do not know the MDP model !!!
- Goal: learn the optimal policy

$$\pi^*: S \to A$$

- Two basic approaches:
 - Model based learning
 - Learn the MDP model (probabilities, rewards) first
 - Solve the MDP afterwards
 - Model-free learning
 - Learn how to act directly
 - No need to learn the parameters of the MDP
 - A number of clones of the two in the literature

Model-based learning

- We need to learn transition probabilities and rewards
- Learning of probabilities
 - ML or Bayesian parameter estimates
 - Use counts $\widetilde{P}(s'|s,a) = \frac{N_{s,a,s'}}{N_{s,a}} \qquad N_{s,a} = \sum_{s' \in S} N_{s,a,s'}$
- Learning rewards
 - Similar to learning with immediate rewards

$$\widetilde{R}(s,a) = \frac{1}{N_{s,a}} \sum_{i=1}^{N_{s,a}} r_i^{s,a}$$

- Problem: on-line update of the policy
 - would require us to solve the MDP after every update !!

Model free learning

• Motivation: value function update (value iteration):

$$V(s) \leftarrow \max_{a \in A} \left[R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a) V(s') \right]$$

• Let

$$Q(s,a) = R(s,a) + \gamma \sum_{s' \in S} P(s'|s,a)V(s')$$

- Then $V(s) \leftarrow \max_{a \in A} Q(s, a)$
- Note that the update can be defined purely in terms of Qfunctions

$$Q(s,a) \leftarrow R(s,a) + \gamma \sum_{s' \in S} P(s'|s,a) \max_{a'} Q(s',a')$$

Q-learning

- Q-learning uses the Q-value update idea
 - **But** relies on a stochastic (on-line, sample by sample) update

$$Q(s,a) \leftarrow R(s,a) + \gamma \sum_{s' \in S} P(s'|s,a) \max_{a'} Q(s',a')$$

is replaced with

$$\hat{Q}(s,a) \leftarrow (1-\alpha)\hat{Q}(s,a) + \alpha \left(r(s,a) + \gamma \max_{a'} \hat{Q}(s',a')\right)$$

r(s,a) - reward received from the environment after performing an action a in state s

- s' new state reached after action a
- α learning rate, a function of $N_{s,a}$
 - a number of times a executed at s

Q-learning

The on-line update rule is applied repeatedly during direct interaction with an environment

```
Q-learning
initialize Q(s,a) = 0 for all s,a pairs
observe current state s
repeat
   select action a; use some exploration/exploitation schedule
   receive reward r
   observe next state s'
                Q(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha (r + \gamma \max_{s} Q(s',a'))
   update
   set s to s'
end repeat
```

Q-learning convergence

The **Q-learning is guaranteed to converge** to the optimal Q-values under the following conditions:

- Every state is visited and every action in that state is tried infinite number of times
 - This is assured via exploration/exploitation schedule
- The sequence of learning rates for each Q(s,a) satisfies:

1.
$$\sum_{i=1}^{\infty} \alpha(i) = \infty$$
 2.
$$\sum_{i=1}^{\infty} \alpha(i)^{2} < \infty$$

 $\alpha(n(s,a))$ - Is the learning rate for the *n*th trial of (s,a)

Exploration vs. Exploitation

- In the RL with the delayed rewards
 - At any point in time the learner has an estimate of $\hat{Q}(\mathbf{x}, a)$ for any state action pair

Dilemma:

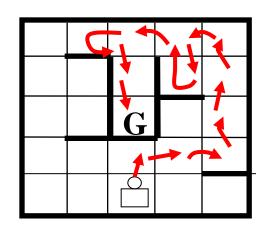
 Should the learner use the current best choice of action (exploitation)

$$\hat{\pi}(\mathbf{x}) = \arg\max_{a \in A} \hat{Q}(\mathbf{x}, a)$$

- Or choose other action a and further improve its estimate of $\hat{Q}(\mathbf{x}, a)$ (exploration)
- Exploration/exploitation strategies
 - Uniform exploration
 - Boltzman exploration

• The basic Q-learning rule updates may propagate distant (delayed) rewards very slowly

Example:



- Goal: a high reward state
- To make the correct decision we need all Q-values for the current position to be good
- Problem:
 - in each run we back-propagate values only 'one-step' back.
 It takes multiple trials to back-propagate values multiple steps.

• Remedy: Backup values for a larger number of steps

Rewards from applying the policy

$$q_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots = \sum_{i=0}^{\infty} \gamma^i r_{t+i}$$

We can substitute (immediate rewards with n-step rewards):

$$q_{t}^{n} = \sum_{i=0}^{n} \gamma^{i} r_{t+i} + \gamma^{n+1} \max_{a'} Q_{t+n}(s', a')$$

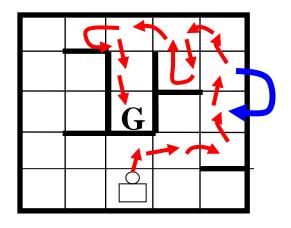
Postpone the update for *n* steps and update with a longer trajectory rewards

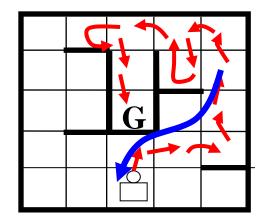
$$Q_{t+n+1}(s,a) \leftarrow Q_{t+n}(s,a) + \alpha \left(q_t^n - Q_{t+n}(s,a)\right)$$

Problems: - larger variance

- exploration/exploitation switching
- wait n steps to update

• One step vs. n-step backup

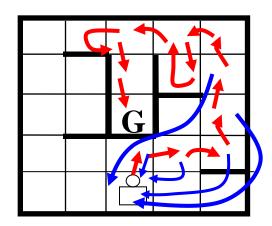




Problems with n-step backups:

- larger variance
- exploration/exploitation switching
- wait n steps to update

- Temporal difference (TD) method
 - Remedy of the wait n-steps problem
 - Partial back-up after every simulation step
 - Similar idea: weather forecast adjustment



Different versions of this idea has been implemented

RL successes

- Reinforcement learning is relatively simple
 - On-line techniques can track non-stationary environments and adapt to its changes

Successful applications:

- TD Gammon learned to play backgammon on the championship level
- Elevator control
- Dynamic channel allocation in mobile telephony
- Robot navigation in the environment