CS 2750 Machine Learning Lecture 21

Ensamble methods: Boosting

Milos Hauskrecht <u>milos@cs.pitt.edu</u> 5329 Sennott Square

Schedule

Final exam:

• April 18: 1:00-2:15pm, in-class

Term projects

• April 23 & April 25: at 1:00 - 2:30pm in CS seminar room

Ensemble methods

• Mixture of experts

- Multiple 'base' models (classifiers, regressors), each covers a different part (region) of the input space
- Committee machines:
 - Multiple 'base' models (classifiers, regressors), each covers the complete input space
 - Each base model is trained on a slightly different train set
 - Combine predictions of all models to produce the output
 - Goal: Improve the accuracy of the 'base' model
 - Methods:
 - Bagging
 - Boosting
 - Stacking (not covered)

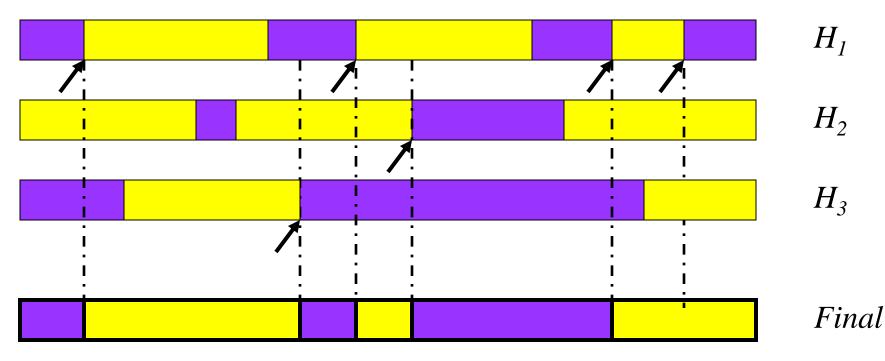
Bagging algorithm

Training

- In each iteration t, t=1,...T
 - Randomly sample with replacement *N* samples from the training set
 - Train a chosen "base model" (e.g. neural network, decision tree) on the samples
- Test
 - For each test example
 - Start all trained base models
 - Predict by combining results of all T trained models:
 - Regression: averaging
 - Classification: a majority vote

Simple Majority Voting

Test examples



Class "no"

CS 2750 Machine Learning

Analysis of Bagging

- Expected error= Bias+Variance
 - *Expected error* is the expected discrepancy between the estimated and true function

$$E\left[\left(\hat{f}(X) - E[f(X)]\right)^2\right]$$

- *Bias* is squared discrepancy between *averaged* estimated and true function

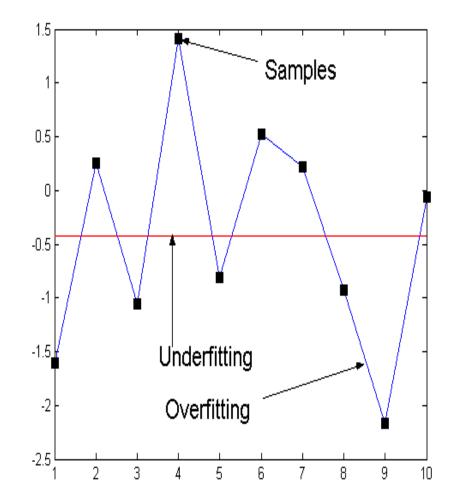
$$\left(E\left[\hat{f}(X)\right]-E\left[f(X)\right]\right)^{2}$$

Variance is expected divergence of the estimated function vs. its average value

$$E\left[\left(\hat{f}(X) - E\left[\hat{f}(X)\right]\right)^2\right]$$

When Bagging works? Under-fitting and over-fitting

- Under-fitting:
 - High bias (models are not accurate)
 - Small variance (smaller influence of examples in the training set)
- Over-fitting:
 - Small bias (models flexible enough to fit well to training data)
 - Large variance (models depend very much on the training set)



When Bagging works

- Main property of Bagging (proof omitted)
 - Bagging decreases variance of the base model without changing the bias!!!
 - Why? averaging!
- Bagging typically helps
 - When applied with an **over-fitted base model**
 - High dependency on actual training data
- It does not help much
 - High bias. When the base model is robust to the changes in the training data (due to sampling)

Boosting

- Mixture of experts
 - One expert per region
 - Expert switching
- Bagging
 - Multiple models on the complete space, a learner is not biased to any region
 - Learners are learned independently
- Boosting
 - Every learner covers the complete space
 - Learners are biased to regions not predicted well by other learners
 - Learners are dependent

Boosting. Theoretical foundations.

- PAC: <u>Probably Approximately Correct framework</u>
 (ε-δ) solution
- PAC learning:
 - Learning with pre-specified error $\boldsymbol{\epsilon}$ and confidence $\boldsymbol{\delta}$ parameters
 - the probability that the misclassification error is larger than ϵ is smaller than δ

 $P(ME(c) > \varepsilon) \le \delta$

- Accuracy (1-ε): Percent of correctly classified samples in test
- Confidence $(1-\delta)$: The probability that in one experiment some accuracy will be achieved

$$P(Acc(c) > 1 - \varepsilon) > (1 - \delta)$$

PAC Learnability

Strong (PAC) learnability:

• There exists a learning algorithm that **efficiently** learns the classification with a pre-specified **accuracy and confidence**

Strong (PAC) learner:

- A learning algorithm *P* that given an arbitrary
 - classification error ε (< 1/2), and
 - confidence δ (<1/2)
- Outputs a classifier that satisfies this parameters
 - In other words gives:
 - classification accuracy $>(1-\varepsilon)$
 - confidence probability $> (1 \delta)$
 - And runs in time polynomial in 1/ δ , 1/ ϵ
 - Implies: number of samples *N* is polynomial in $1/\delta$, $1/\epsilon$

Weak Learner

Weak learner:

- A learning algorithm (learner) *W* that gives:
 - a classification accuracy $> 1-\varepsilon_{o}$
 - with probability >1- δ_o
- For some **fixed and uncontrollable**
 - error ε_{o} (<1/2)
 - confidence δ_o (<1/2)

and this on an arbitrary distribution of data entries

Weak learnability=Strong (PAC) learnability

- Assume there exists a weak learner
 - it is better that a random guess (> 50 %) with confidence higher than 50 % on any data distribution
- Question:
 - Is the problem also PAC-learnable?
 - Can we generate an algorithm *P* that achieves an arbitrary $(\varepsilon-\delta)$ accuracy?
- Why is important?
 - Usual classification methods (decision trees, neural nets), have specified, but uncontrollable performances.
 - Can we improve performance to achieve any pre-specified accuracy (confidence)?

Weak=Strong learnability!!!

• Proof due to R. Schapire

An arbitrary $(\varepsilon - \delta)$ improvement is possible

Idea: combine multiple weak learners together

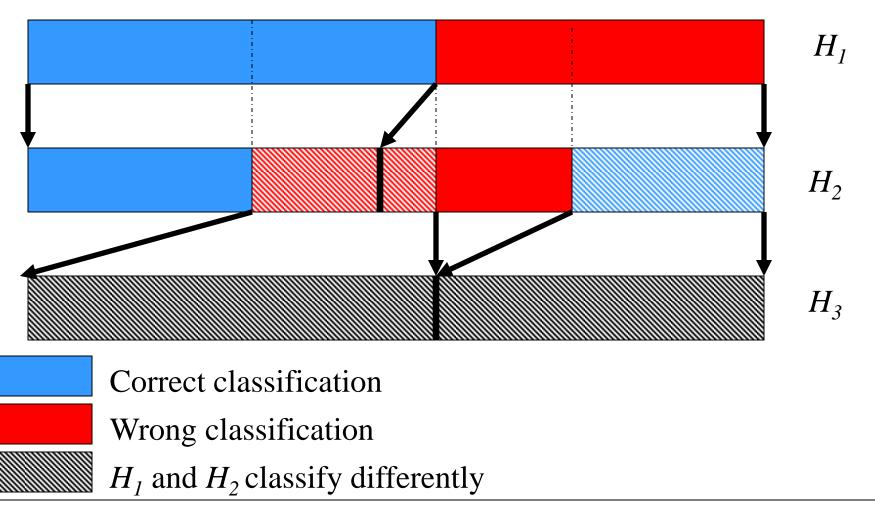
- Weak learner W with confidence δ_0 and maximal error ε_0
- It is possible:
 - To improve (boost) the confidence
 - To improve (boost) the accuracy

by training different weak learners on slightly different datasets

Boosting accuracy Training

Distribution samples

Learners



CS 2750 Machine Learning

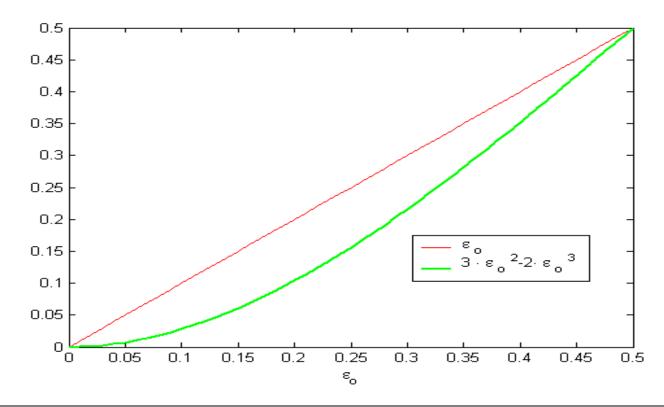
Boosting accuracy

• Training

- Sample randomly from the distribution of examples
- Train hypothesis H_{I} on the sample
- Evaluate accuracy of H_1 on the distribution
- Sample randomly such that for the half of samples $H_{1.}$ provides correct, and for another half, incorrect results; Train hypothesis H_2 .
- Train H_3 on samples from the distribution where H_1 and H_2 classify differently
- Test
 - For each example, decide according to the majority vote of H_1 , H_2 and H_3

Theorem

- If each hypothesis has an error $< \varepsilon_o$, the final 'voting' classifier has error $< g(\varepsilon_o) = 3 \varepsilon_o^2 2\varepsilon_o^3$
- Accuracy improved !!!!
- Apply recursively to get to the target accuracy !!!



CS 2750 Machine Learning

Theoretical Boosting algorithm

- Similarly to boosting the accuracy we can boost the confidence at some restricted accuracy cost
- **The key result:** we can improve both the accuracy and confidence
- Problems with the theoretical algorithm
 - A good (better than 50 %) classifier on all distributions and problems
 - We cannot properly sample from data-distribution
 - The method requires a large training set
- Solution to the sampling problem:
 - Boosting by sampling
 - AdaBoost algorithm and variants

AdaBoost

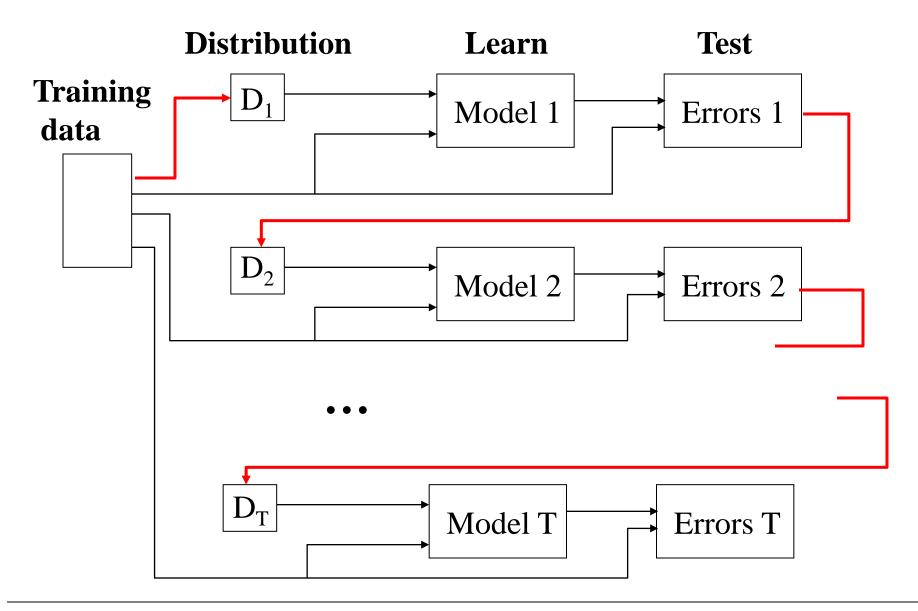
- AdaBoost: boosting by sampling
- **Classification** (Freund, Schapire; 1996)
 - AdaBoost.M1 (two-class problem)
 - AdaBoost.M2 (multiple-class problem)
- **Regression** (Drucker; 1997)

– AdaBoostR

AdaBoost

- Given:
 - A training set of *N* examples (attributes + class label pairs)
 - A "base" learning model (e.g. a decision tree, a neural network)
- Training stage:
 - Train a sequence of T "base" models on T different sampling distributions defined upon the training set (D)
 - A sample distribution D_t for building the model *t* is constructed by modifying the sampling distribution D_{t-1} from the (t-1)th step.
 - Examples classified incorrectly in the previous step receive higher weights in the new data (attempts to cover misclassified samples)
- Application (classification) stage:
 - Classify according to the weighted majority of classifiers

AdaBoost training



CS 2750 Machine Learning

AdaBoost algorithm

Training (step t)

• Sampling Distribution D_t

 $D_t(i)$ - a probability that example i from the original training dataset is selected

 $D_1(i) = 1/N$ for the first step (t=1)

- Take K samples from the training set according to D_t
- Train a classifier h_t on the samples
- Calculate the error ε_t of h_t : $\varepsilon_t = \sum D_t(i)$
- Classifier weight: $\beta_t = \varepsilon_t / (1 \varepsilon_t)$
- New sampling distribution

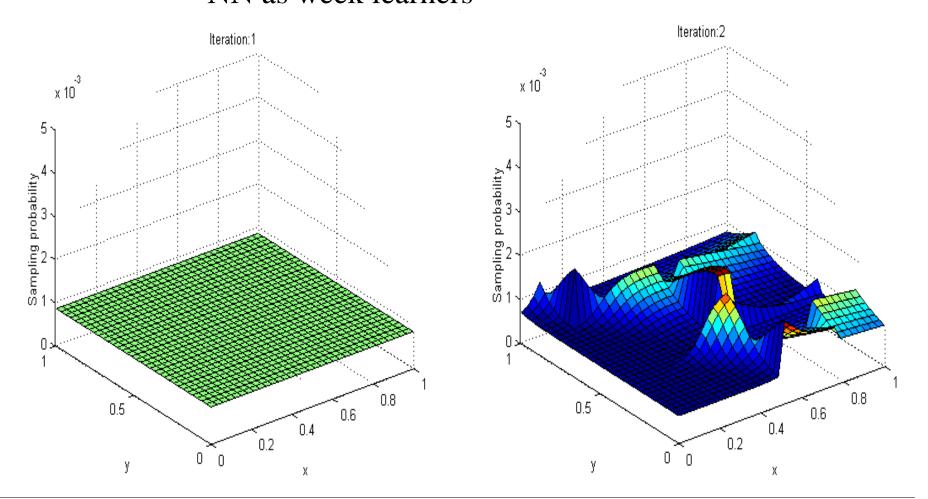
$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \begin{cases} \beta_t & h_t(x_i) = y_i \\ 1 & \text{otherwise} \end{cases}$$

Norm. constant

 $i:h_t(x_i) \neq y_i$

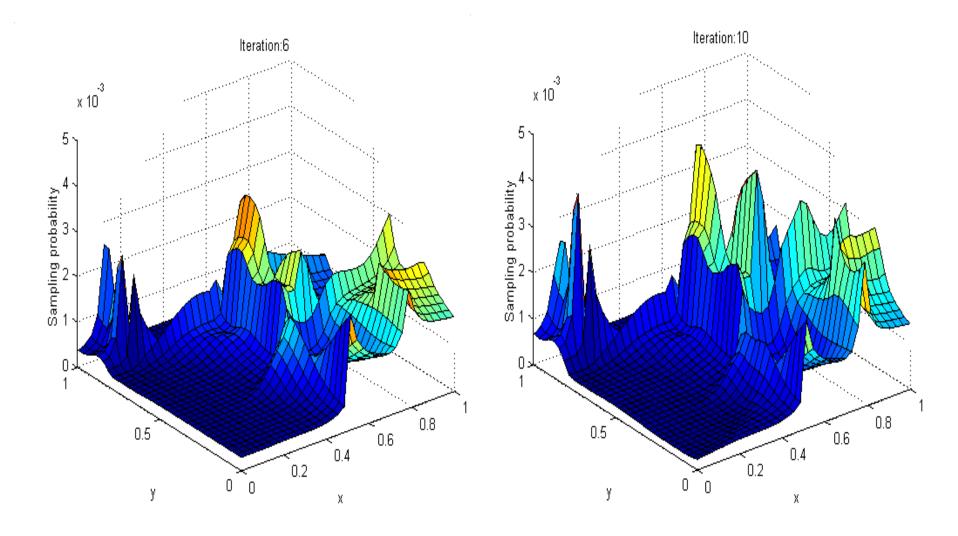
AdaBoost. Sampling Probabilities

Example: - Nonlinearly separable binary classification - NN as week learners



CS 2750 Machine Learning

AdaBoost: Sampling Probabilities



AdaBoost classification

- We have T different classifiers h_t
 - weight w_t of the classifier is proportional to its accuracy on the training set

$$w_{t} = \log(1/\beta_{t}) = \log((1-\varepsilon_{t})/\varepsilon_{t})$$
$$\beta_{t} = \varepsilon_{t}/(1-\varepsilon_{t})$$

• Classification:

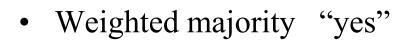
For every class *j*=0,1

- Compute the sum of weights *w* corresponding to ALL classifiers that predict class *j*;
- Output class that correspond to the maximal sum of weights (weighted majority)

$$h_{final}(\mathbf{x}) = \arg \max_{j} \sum_{t:h_t(x)=j} w_t$$

Two-Class example. Classification.

- Classifier 1 "yes" 0.7
- Classifier 2 "no" 0.3
- Classifier 3 "no" 0.2



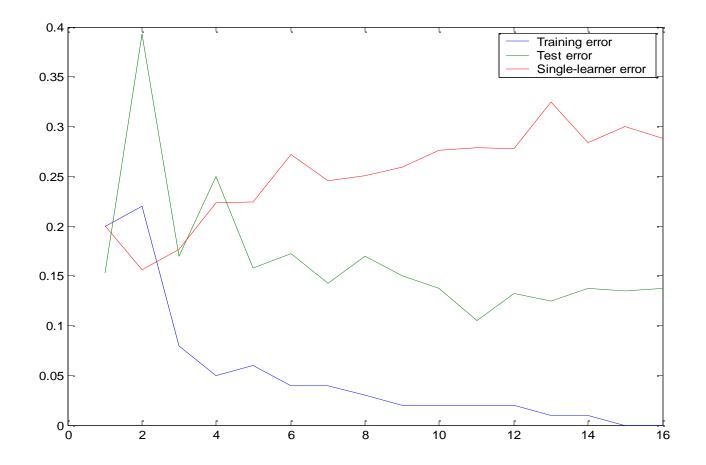
0.7 - 0.5 = +0.2

• The final choose is "yes" + 1

What is boosting doing?

- Each classifier specializes on a particular subset of examples
- Algorithm is concentrating on "more and more difficult" examples
- Boosting can:
 - Reduce variance (the same as Bagging)
 - But also to eliminate the effect of high bias of the weak learner (unlike Bagging)
- Train versus test errors performance:
 - Train errors can be driven close to 0
 - But test errors do not show overfitting
- Proofs and theoretical explanations in **a number of papers**

Boosting. Error performances



Model Averaging

- An alternative to combine multiple models: can be used for supervised and unsupervised frameworks
- For example:
 - Likelihood of the data can be expressed by averaging over the multiple models

$$P(D) = \sum_{i=1}^{N} P(D \mid M = m_i) P(M = m_i)$$

– Prediction:

$$P(y \mid x) = \sum_{i=1}^{N} P(y \mid x, M = m_i) P(M = m_i)$$